Example

Example 6.10, p5q1, Fig. 6.7 0N pyo3:
e RC'=0.2

e Input voltage: z(t) = (3/5)e™ 2 u(t)
e Initial condition: y(07) = —2

e Find y(t), the voltage across the capacitor.
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Natural and forced responses

e From the example, it can be seen that the output consists of
two terms: a term due to input and a term due to initial
conditions.

o LetY(s) = Y(s) + Y (s), where

o Y({/)(s) is entirely associated with the input, called the forced
response (system initial rest), and

o Y(")(s) is due entirely to the initial conditions, called the
natural response (system input=0).



Natural and forced responses:. examples

e Read example 6.11, p5os.

e Problem 6.9(b), p505. determine the forced and the natural
responses of the system described by the following differential
equation and initial conditions:

j—;y(t)—l—ély t) = 8x(t)
x(t) = u(t)

y(07) = 1

%y(t) = 2



Natural and forced responses:. examples (cont.)

e Apply Eqg. (6.19) pso4 and take LT of both sides of the
differential equation:

2Y(5)~ (0] +sulblco ) +4Y(5)
= 8X(s) -
X(s) = 1/s
Y(s) = 3(328+4) 882124, where
Yii(s) = 5(528+4)
yogg — P2



Natural and forced responses:. examples (cont.)

e Forced response Y (/)(s): three poles ats = 0, s = 52
(complex pole pair, o = 0, wy = 2).

Y(f)(s) - é i S fg132 i S 52]2
A = 2
B, = -1
By = —1

Ci = Bi+By=-2
Cy = j(B1—B2)=0
y () = 2u(t) + Cre®cos(wot)u(t) + Cae®sin(wot)
= 2u(t) — 2cos(2t)u(t)



Natural and forced responses:. examples (cont.)

e Natural response Y (") (s): two poles at 5 = 452 (complex pole
pair, a =0, wy = 2).

D D
y((s) = 2
s—172 s+ 32
2 2
D, = —l._j
74
—2 2
Dy = .—I_]
714

Fi = Di+Dy=1
FEy = j(D1—Dy) =1
y"M(t) = Ere®cos(wot)u(t) + Ese“sin(wot)
= cos(2t)u(t) 4+ sin(2t)u(t)



Laplace transform in circuit analysis

e Resistor:
vr(t) = Rig(t)
Vr(s) = RIg(s)
e Inductor:
vr(t) = L%z’L(t)
Vi(s) = sLIp(s)— Lig(07)
e Capacitor:
wlt) = & [ oty + e
Vi(s) = —Io(s)+ 2L




Laplace transform in circuit analysis (cont.)
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Figure 6.10 (p. 507): Laplace transform circuit models for use with
Kirchhoff’s voltage law. (a) Resistor. (b) Inductor with mnitial current 7,(07). (c)
Capacitor with mitial voltage v (07).
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Figure 6.11 (p. 507): Laplace transform circuit models for use with
Kirchhoff’s current law. (a) Resistor. (b) Inductor with mitial current i,(07).

(c¢) Capacitor with mitial voltage v.(07).



Laplace transform in circuit analysis: example

Example 6.13, p5os: determine output voltage y(¢) in the circuit
shown in Fig. 6.12, p5os. Given z(t) = 2e~%u(t), vo(07) = 5V.
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Figure 6.12 (p. 508): Electrical circuit for Example 6.13. (a)
Original circuit. (b) Transformed circuat.



Laplace transform in circuit analysis (cont.)

1000(1;(s) + Ix(s))
5) 1

Y — I

() + s * s(10—%) 1(s)
Y (s) + 100015(s), solving for Y(s) gives

10 5)
X(S)S + B
s+20 s+ 20

2 s+10 5 -3

s+10s4+20 s+20 s+20

—3e Y u(t)




Laplace transform in circuit analysis (cont.)

e Natural response: setting the voltage or current source
associated with input equal to zero.

e Forced response: setting the initial conditions equal to zero,
which eliminates the voltage or current sources present in the
transformed capacitor and inductor circuit models.



Properties of the bilateral Laplace transform

e Bilateral Laplace transform: X (s) = [~ z(t)e*'dt, well suited
to problems involving noncausal signals and systems.

e Linearity, scaling (time), s-domain shift, convolution, and
differentiation in the s-domain are identical for bilateral and
unilateral Laplace transforms.

e The operation of these properties may change the ROC.

e Usually, ROC of a sum of signals are the interactions of the
iIndividual signals.

e ROC may be larger than the interaction of the individual ROCs
If a pole and zero cancel in the sum.



Properties of the bilateral Laplace transform (cont.)

e Example:

p(t) = e Mu(t) <L X(s) = iz’ ROC Re(s) > —2

C 1
(54 2)(s+3)
ROC Re(s) > —3

1
2(t) —y(t) < 5 BOC Re(s) > =3

e If the interactions of the ROCs is the empty set and pole-zero
cancellation does not occur, then the Laplace transform of
ax(t) + by(t) does not exist.



Properties of the bilateral Laplace transform (cont.)

e The bilateral Laplace transform involving time shifts,
differentiation in the time domain, and integration with respect
to time differ slightly from their unilateral counterparts.

e Time shift:

x(t — 1) TN e "X (s), restriction :

for all 7 such that x(t — 7)u(t) = x(t — 7)u(t — 7).
Shift is always satisfied for causal x(t) with 7 > 0

r(t—71) «—— e °7X(s) (restriction removed)



Properties of the bilateral Laplace transform (cont.)

e Differentiation in the time domain:

iaj(t) L, sX(s)—x(07)

—zx(t) «—— sX(s), ROCis atleast R, (R,: the ROC of X(s)).
ROC of s X (s) may be larger than R,

if X(s) has a single poleats =20
on the ROC boundary.



Properties of the bilateral Laplace transform (cont.)

e Integration with respect to time:

/t o(rydr Lo T X6)

oo S s
t
X .
/ x(T)dr < = (S), with ROC R, () Re(s) > 0.
oo s

e The Initial- and final-value theorems apply to the bilateral
transform, with the additional restriction that x(¢) = 0 for ¢ < 0.



Properties of the ROC

e Bilateral Laplace transform is not unigue, unless the ROC is
specified.

e ROC is related to the characteristics of the signal.
e ROC cannot contain any poles.
e Left-sided signals (LSS): a signal for which x(¢) = 0 for ¢t > b.

e Right-sided signals (RSS): a signal for which z(¢) = 0 for ¢t < a.

e Two-sided signals (TSS): a signal that is infinite in extent in
both directions.



Properties of the ROC (cont.)
ROC of an LSS signal is of the form ¢ < o,,.
ROC of an RSS signal is of the form o > o,,.
ROC of a TSS signal is of the form o, < o < o,,.

Boundaries are determined by pole locations.



Properties of the ROC: example
Example: determine the ROC of x(t) = e 2'u(t) + e tu(—1):

o ¢ %ty(t): RSS, pole at s = —2, ROC: Re(s) > —2
o ¢ 'u(—t): LSS, pole at s = —1, ROC: IRe(s) < —1.

e ROC of z1(): —2 < Re(s) < —1, a strip of the s-plane located
between poles.



Properties of the ROC: example (cont.)

Example: determine the ROCs of z5(t) = e tu(t) + e ?*u(—t):
e ¢ 'u(t): RSS, pole at s = —1, ROC: Re(s) > —1
o ¢ %ly(—t): LSS, pole at s = —2, ROC: Re(s) < —2.

e ROC of z5(%) is an empty set. Laplace transform of z5(t) does
not exist.



Properties of the ROC: example (cont.)
Example: determine the ROCs of z5(t) = e~ ?Itl:
o 2(t) = e Ptu(t) + ePlu(—1)

e e ty(t): RSS, pole at s = —b, ROC Re(s) > —b. e’tu(—t):
LSS, pole ats = b, ROC Re(s) < b.

e Case 1: b > 0.
ROC of x3(t): —b < Re(s) < b

e Case 2: b < 0.

ROC of x3(t) is an empty set. Laplace transform of x3(¢)
does not exist.



Inversion of the bilateral Laplace transforms

e Primary difference between unilateral and bilateral Laplace
transforms is that we must use the ROC to determine a unique
Inverse transform in the bilateral case.

o Apedityl(t) < £, A with ROC Re(s) > dj, (right-sided

] ’ S—dk’
transform pair).

o —Apedity(—t) < = Si‘flk, with ROC Re(s) < dj, (left-sided
transform pair).




Inversion of the bilateral Laplace transforms: examples
Example 6.17, ps17: Find z(¢) given

—Hs — 7

X6 = G DG -0 12

with ROC — 1 < Re(s) < 1

Partial-fraction expansion of X (s):




Inversion of the bilateral Laplace transforms: examples
(cont.)

e Poles at s = —2.

1
Right-sided inverse: e~ 2tu(t) <=
g e “u(t) —
: - : —2t L 1
Left-sided inverse: 1— e”“"u(—t) «—
s+ 2

e Correct choice: the right-sided inverse Laplace transform.



Inversion of the bilateral Laplace transforms: examples
(cont.)

e Poles at s = —1.

1
Right-sided inverse: e tu(t) <=
g e "u(t) ST 1
. . _ i c 1
Left-sided inverse: 1— e "u(—t) «—
s+ 1

e Correct choice: the right-sided inverse Laplace transform.



Inversion of the bilateral Laplace transforms: examples
(cont.)

e Poles at s = 1.

r 2

Right-sided inverse: — 2e’u(t)
Z L \ 2

Left-sided inverse:2eu(—t)

e Correct choice: the left-sided inverse Laplace transform.

e Thus, z(t) = e 'u(t) + e tu(t) + 2etu(—t).



Inversion of the bilateral Laplace transforms: examples
(cont.)

e Read Example 6.18, ps5s.

e Problem 6.14, ps515: find x(t) of

_84—|—383—482—|-5S—|-5

X{(s) s24+3s—4

, with ROC —4 < Re(s) < 1.

Long division and then partial fraction expansion:

5s + 5 2 3
X(s) = s* = 5° .
S S P Py} Sl e Sy




Inversion of the bilateral Laplace transforms: examples
(cont.)

e For pole at s = 1, -2 corresponds to a left-sided signal with
the given ROC. Thus,

2
s—1

—2e*u(—t) <

e For pole at s = —4, +4
the given ROC. Thus,

corresponds to a right-sided signal with

c 3
/S—|—4

3e Mu(t) <

o Thus, z(t) = §@)(t) — 2etu(—t) + 3e~*u(t)



The Transfer Function

e For LTI systems: y(t) = x(t) * h(t), Y(s) = X (s)H (s).

e For a system described by the input-output differential
equation:

Z akdtky Z b T

) Y(s) Zk:() bis®  bIlheo(s —cr) ;=  bu
TOZX0 ~ S ae Dol —d) | aw




The Transfer Function: examples

e H(s) is the ratio of two polynomials in s, and is termed a
rational transfer function.

e Read Example 6.19, pso;.

e Problem 6.17(b), ps21: find H(s) given

Coult) — Tou(t) + 3y(t) = 4w (1)
s%Y (s) — s°Y (s) + 3Y (s) = 45X (s)
Y(s) 4s

H(S):X(s) 83— 8243




The Transfer Function: examples (cont.)

e Problem 6.18(b), p522: determine the differential-equation
description of the system given

s 1)(s— 1)
Hs) = o6
Y(s) — 2s*°—2

X(s) 834352+ 2s
Cross multiply:

s3Y (s) +35°Y (s) +2s5Y(s) = 25°X(s) —2X(s)

d’ d? d d?
Ca(t) 32 sy(t) + 2y () = 2a(t) — 2u()



System causality and stability

e System transfer function H (s) L h(t), system impulse
response.

e In order to uniquely determine h(t), must know ROC or other
knowledge of the system characteristics.

e Causal system — h(t) =0fort < 0 — H(s) is right-sided
Laplace transform.

e Stable system — h(t) absolutely integrable — FT of x(t) exists
— ROC includes gw-axis.



System causality and stability (cont.)

e Assume a pole at s = d.

If « = Re(dy) < 0 (pole in the left half plane) h(t) contains a
term e** that is exponentially decaying.

If « = Re(dy) > 0 (pole in the right half plane) h(t) contains a
term e** that is exponentially increasing.

e Conclusion: If a system is causal and stable, then all poles of
H (s) are in the left half of the s-plane.



System causality and stability: examples

e Example 6.21, p505: given

Determine h(t) assuming

the system is stable
the system is causal
can the system be both causal and stable?



System causality and stability: examples
Poles at s = -3 and s = 2.

e If the system is stable, then pole at s = —3 contributes to a
right-sided term 2e~>'u(t), and pole at s = 2 contributes to a
left-sided term —e?'u(—t) (otherwise this term is not absolutely
Integrable). Thus

h(t) = 2e tu(t) — e*fu(—t).

e If the system is causal, then both poles must contribute to
right-sided terms, thus

h(t) = 2e % u(t) + e*u(t).

e The system cannot be both causal and stable because pole at
s = 2 Is In the right half of the s-plane.



System causality and stability: examples (cont.)

e Problem 6.19(a), ps26: given

S0+ 55y(t) + 6y(t) = J50(0) + 83a(0) + 1321

Determine h(t) assuming

the system is stable
the system is causal



System causality and stability: examples (cont.)

Taking Laplace transform of both sides of the diff. equation gives

s?Y (s) +5sY (s) +6Y(s) = s°X(s)+8sX(s)+ 13X (s)
s* + 8s+ 13 35+ 7
— 1+
s?+ 55+ 6 s?+ 55+ 6
1 2

= 1]
+5—|—2+s—|—3

H(s) =

Poles at s = —2 and s = —3 are In the left half of the s-plane. For
both causal and stable systems, these poles contributed to
right-sided terms. Thus, for both cases,

h(t) = 8(t) + 2e > u(t) + e ul(t).



Freq. response from poles and zeros

e |If ROC includes the jw-axis, frequency response can be
obtained as H(jw) = H(S)|s=jw-

e We examine both the magnitude and phase responses of
H (jw) using the Bode diagram approach.

For rational transfer function, the freq. response is obtained as

| bI1ns, (jw — cr)
H(jw) =
9 = T e — dy
_ K Tl @ 5)7 where K_bH’€ (=)

[Teei (1 -4 [Teei(—dx)



Freq. response from poles and zeros-

Magnitude and phase responses:

M
|H(jw)|lag = 20logio| K|+ Z 20log10
k=1
N »
Z 20log1g |1 — Zud
dy,
k=1
Jw

arg{H(jw)} = arg{K}+ Z arg (1 —

1 — 22

Bode diagram

Jw

Ck




Freq. response from poles and zeros- Bode diagram (cont.)

Consider a pole factor (1 — jw/dy) for which dy = —w, where wy, is
a real number.

e Approximate gain response:
—20log19 ’1 + 4 | = —10logq9 (1 + & )

Low-frequency asymptote: w < wy,

—10log1 (1 + Z—z) ~ —10log19(1) = 0dB

High- frequencybasymptote w > Wy,

—10log19 (1 + & ) —20log10 ||, a straight line with a
slope of -20 dB/decade

The intersection frequency wy:. corner frequency or break
frequency of the Bode diagram.




Freq. response from poles and zeros- Bode diagram (cont.)

e Approximate phase response:
—arg{l + jw/wp} = —arctan (w%)

w < wp/10: 0°
wp/10 < w < 10wy: linearly decreases from 0° to —90°.
10wy < w: —90°



Freq. response from poles and zeros- Bode diagram (cont.)
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Bode diagram - example

Example 6.25, ps35. sketch the magnitude and phase response
as a Bode diagram for the LTI system described by transfer

function: 5(s 1 10)
H(s) = 75105 + 509

Frequency response:

1445
(1+ jw) (1+£2)

H(jw) =

e Two pole corner frequencies: w = 1 and w = 50

e Single zero corner frequencies: w = 10



Bode diagram - example (cont.)

20 20
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Bode diagram - example (cont.)

= 45 |
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) z 0
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