
Example

Example 6.10, p501, Fig. 6.7 on p493:

• RC = 0.2

• Input voltage: x(t) = (3/5)e−2tu(t)

• Initial condition: y(0−) = −2

• Find y(t), the voltage across the capacitor.
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Example (cont.)
The differential equation:

d

dt
y(t) +

1
RC

y(t) =
1

RC
x(t)

d

dt
y(t) + 5y(t) = 5x(t), taking LT of both sides

sY (s)− y(0−) + 5Y (s) = 5X(s)

Y (s) =
1

s + 5
[5X(s) + y(0−)]

x(t) = (3/5)e−2tu(t) Lu←→ X(s) =
3/5

s + 2

Y (s) =
3

(s + 2)(s + 5)
+
−2

s + 5
=

−2s− 1
(s + 2)(s + 5)

=
1

s + 2
− 3

s + 5
y(t) = e−2tu(t)− 3e−5tu(t)



ECE352 2

Natural and forced responses

• From the example, it can be seen that the output consists of
two terms: a term due to input and a term due to initial
conditions.

• Let Y (s) = Y (f)(s) + Y (n)(s), where

• Y (f)(s) is entirely associated with the input, called the forced
response (system initial rest), and

• Y (n)(s) is due entirely to the initial conditions, called the
natural response (system input=0).
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Natural and forced responses: examples

• Read example 6.11, p503.

• Problem 6.9(b), p505: determine the forced and the natural
responses of the system described by the following differential
equation and initial conditions:

d2

dt2
y(t) + 4y(t) = 8x(t)

x(t) = u(t)

y(0−) = 1
d

dt
y(t)

∣∣∣∣
t=0−

= 2.
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Natural and forced responses: examples (cont.)

• Apply Eq. (6.19) p494 and take LT of both sides of the
differential equation:

s2Y (s)−
(

d

dt
y(t)

∣∣∣∣
t=0−

+ sy(t)|t=0−

)
+ 4Y (s)

= 8X(s)

X(s) = 1/s

Y (s) =
8

s(s2 + 4)
+

s + 2
s2 + 4

, where

Y (f)(s) =
8

s(s2 + 4)

Y (n)(s) =
s + 2
s2 + 4
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Natural and forced responses: examples (cont.)

• Forced response Y (f)(s): three poles at s = 0, s = ±j2
(complex pole pair, α = 0, ω0 = 2).

Y (f)(s) =
A

s
+

B1

s− j2
+

B2

s + j2
A = 2

B1 = −1

B2 = −1

C1 = B1 + B2 = −2

C2 = j(B1 −B2) = 0

y(f)(t) = 2u(t) + C1e
αtcos(ω0t)u(t) + C2e

αtsin(ω0t)

= 2u(t)− 2cos(2t)u(t)
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Natural and forced responses: examples (cont.)

• Natural response Y (n)(s): two poles at s = ±j2 (complex pole
pair, α = 0, ω0 = 2).

Y (n)(s) =
D1

s− j2
+

D2

s + j2

D1 =
2 + j2

j4

D2 =
−2 + j2

j4
E1 = D1 + D2 = 1

E2 = j(D1 −D2) = 1

y(n)(t) = E1e
αtcos(ω0t)u(t) + E2e

αtsin(ω0t)

= cos(2t)u(t) + sin(2t)u(t)
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Laplace transform in circuit analysis

• Resistor:

vR(t) = RiR(t)

VR(s) = RIR(s)

• Inductor:

vL(t) = L
d

dt
iL(t)

VL(s) = sLIL(s)− LiL(0−)

• Capacitor:

vc(t) =
1
C

∫ t

0−
iC(τ)dτ + vC(0−)

Vc(s) =
1

sC
IC(s) +

vC(0−

s
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Laplace transform in circuit analysis (cont.)



ECE352 9

Laplace transform in circuit analysis: example

Example 6.13, p508: determine output voltage y(t) in the circuit
shown in Fig. 6.12, p508. Given x(t) = 2e−10tu(t), vC(0−) = 5V.
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Laplace transform in circuit analysis (cont.)

Y (s) = 1000(I1(s) + I2(s))

X(s) = Y (s) +
5
s

+
1

s(10−4)
I1(s)

X(s) = Y (s) + 1000I2(s), solving for Y(s) gives

Y (s) = X(s)
s + 10
s + 20

− 5
s + 20

=
2

s + 10
s + 10
s + 20

− 5
s + 20

=
−3

s + 20
y(t) = −3e−20tu(t)
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Laplace transform in circuit analysis (cont.)

• Natural response: setting the voltage or current source
associated with input equal to zero.

• Forced response: setting the initial conditions equal to zero,
which eliminates the voltage or current sources present in the
transformed capacitor and inductor circuit models.
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Properties of the bilateral Laplace transform

• Bilateral Laplace transform: X(s) =
∫∞
−∞ x(t)e−stdt, well suited

to problems involving noncausal signals and systems.

• Linearity, scaling (time), s-domain shift, convolution, and
differentiation in the s-domain are identical for bilateral and
unilateral Laplace transforms.

• The operation of these properties may change the ROC.

• Usually, ROC of a sum of signals are the interactions of the
individual signals.

• ROC may be larger than the interaction of the individual ROCs
if a pole and zero cancel in the sum.
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Properties of the bilateral Laplace transform (cont.)

• Example:

x(t) = e−2tu(t) L←→ X(s) =
1

s + 2
, ROC Re(s) > −2

y(t) = e−2tu(t)− e−3tu(t) L←→ Y (s) =
1

(s + 2)(s + 3)
,

ROC Re(s) > −3

x(t)− y(t) L←→ 1
s + 3

, ROC Re(s) > −3

• If the interactions of the ROCs is the empty set and pole-zero
cancellation does not occur, then the Laplace transform of
ax(t) + by(t) does not exist.
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Properties of the bilateral Laplace transform (cont.)

• The bilateral Laplace transform involving time shifts,
differentiation in the time domain, and integration with respect
to time differ slightly from their unilateral counterparts.

• Time shift:

x(t− τ) Lu←→ e−sτX(s), restriction :

for all τ such that x(t− τ)u(t) = x(t− τ)u(t− τ ).

Shift is always satisfied for causal x(t) with τ > 0

x(t− τ) L←→ e−sτX(s) (restriction removed)
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Properties of the bilateral Laplace transform (cont.)

• Differentiation in the time domain:

d

dt
x(t) Lu←→ sX(s)− x(0−)

d

dt
x(t) L←→ sX(s), ROC is at least Rx (Rx: the ROC of X(s)).

ROC of sX(s) may be larger than Rx

if X(s) has a single pole at s = 0

on the ROC boundary.
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Properties of the bilateral Laplace transform (cont.)

• Integration with respect to time:∫ t

−∞
x(τ)dτ

Lu←→ x(−1)(0−)
s

+
X(s)

s∫ t

−∞
x(τ)dτ

L←→ X(s)
s

, with ROC Rx

⋂
Re(s) > 0.

• The initial- and final-value theorems apply to the bilateral
transform, with the additional restriction that x(t) = 0 for t < 0.
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Properties of the ROC

• Bilateral Laplace transform is not unique, unless the ROC is
specified.

• ROC is related to the characteristics of the signal.

• ROC cannot contain any poles.

• Left-sided signals (LSS): a signal for which x(t) = 0 for t > b.

• Right-sided signals (RSS): a signal for which x(t) = 0 for t < a.

• Two-sided signals (TSS): a signal that is infinite in extent in
both directions.
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Properties of the ROC (cont.)

• ROC of an LSS signal is of the form σ < σn.

• ROC of an RSS signal is of the form σ > σp.

• ROC of a TSS signal is of the form σp < σ < σn.

• Boundaries are determined by pole locations.
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Properties of the ROC: example

Example: determine the ROC of x1(t) = e−2tu(t) + e−tu(−t):

• e−2tu(t): RSS, pole at s = −2, ROC: Re(s) > −2

• e−tu(−t): LSS, pole at s = −1, ROC: Re(s) < −1.

• ROC of x1(t): −2 < Re(s) < −1, a strip of the s-plane located
between poles.
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Properties of the ROC: example (cont.)

Example: determine the ROCs of x2(t) = e−tu(t) + e−2tu(−t):

• e−tu(t): RSS, pole at s = −1, ROC: Re(s) > −1

• e−2tu(−t): LSS, pole at s = −2, ROC: Re(s) < −2.

• ROC of x2(t) is an empty set. Laplace transform of x2(t) does
not exist.
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Properties of the ROC: example (cont.)

Example: determine the ROCs of x3(t) = e−b|t|:

• x(t) = e−btu(t) + ebtu(−t)

• e−btu(t): RSS, pole at s = −b, ROC Re(s) > −b. ebtu(−t):
LSS, pole at s = b, ROC Re(s) < b.

• Case 1: b > 0.

? ROC of x3(t): −b < Re(s) < b

• Case 2: b < 0.

? ROC of x3(t) is an empty set. Laplace transform of x3(t)
does not exist.
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Inversion of the bilateral Laplace transforms

• Primary difference between unilateral and bilateral Laplace
transforms is that we must use the ROC to determine a unique
inverse transform in the bilateral case.

• Ake
dktu(t) L←→ Ak

s−dk
, with ROC Re(s) > dk (right-sided

transform pair).

• −Ake
dktu(−t) L←→ Ak

s−dk
, with ROC Re(s) < dk (left-sided

transform pair).
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Inversion of the bilateral Laplace transforms: examples

Example 6.17, p517: Find x(t) given

X(s) =
−5s− 7

(s + 1)(s− 1)(s + 2)
, with ROC − 1 < Re(s) < 1

Partial-fraction expansion of X(s):

X(s) =
1

s + 2
+

1
s + 1

− 2
s− 1
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Inversion of the bilateral Laplace transforms: examples
(cont.)

• Poles at s = −2.

Right-sided inverse: e−2tu(t) L←→ 1
s + 2

Left-sided inverse: − e−2tu(−t) L←→ 1
s + 2

• Correct choice: the right-sided inverse Laplace transform.



ECE352 25

Inversion of the bilateral Laplace transforms: examples
(cont.)

• Poles at s = −1.

Right-sided inverse: e−tu(t) L←→ 1
s + 1

Left-sided inverse: − e−tu(−t) L←→ 1
s + 1

• Correct choice: the right-sided inverse Laplace transform.
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Inversion of the bilateral Laplace transforms: examples
(cont.)

• Poles at s = 1.

Right-sided inverse:− 2etu(t) L←→ 2
s− 1

Left-sided inverse:2etu(−t) L←→ 2
s− 1

• Correct choice: the left-sided inverse Laplace transform.

• Thus, x(t) = e−2tu(t) + e−tu(t) + 2etu(−t).
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Inversion of the bilateral Laplace transforms: examples
(cont.)

• Read Example 6.18, p518.

• Problem 6.14, p518: find x(t) of

X(s) =
s4 + 3s3 − 4s2 + 5s + 5

s2 + 3s− 4
, with ROC − 4 < Re(s) < 1.

Long division and then partial fraction expansion:

X(s) = s2 +
5s + 5

(s− 1)(s + 4)
= s2 +

2
s− 1

+
3

s + 4
.
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Inversion of the bilateral Laplace transforms: examples
(cont.)

• For pole at s = 1, 2
s−1 corresponds to a left-sided signal with

the given ROC. Thus,

−2etu(−t) L←→ 2
s− 1

• For pole at s = −4, 3
s+4 corresponds to a right-sided signal with

the given ROC. Thus,

3e−4tu(t) L←→ 3
s + 4

• Thus, x(t) = δ(2)(t)− 2etu(−t) + 3e−4tu(t)
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The Transfer Function

• For LTI systems: y(t) = x(t) ∗ h(t), Y (s) = X(s)H(s).

H(s) =
Y (s)
X(s)

.

• For a system described by the input-output differential
equation:

N∑
k=0

ak
dk

dtk
y(t) =

M∑
k=0

bk
dk

dtk
x(t)

H(s) =
Y (s)
X(s)

=
∑M

k=0 bks
k∑N

k=0 aksk
=

b̃
∏M

k=0(s− ck)∏N
k=0(s− dk)

, b̃ =
bM

aN



ECE352 30

The Transfer Function: examples

• H(s) is the ratio of two polynomials in s, and is termed a
rational transfer function.

• Read Example 6.19, p521.

• Problem 6.17(b), p521: find H(s) given

d3

dt3
y(t)− d2

dt2
y(t) + 3y(t) = 4

d

dt
x(t)

s3Y (s)− s2Y (s) + 3Y (s) = 4sX(s)

H(s) =
Y (s)
X(s)

=
4s

s3 − s2 + 3
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The Transfer Function: examples (cont.)

• Problem 6.18(b), p522: determine the differential-equation
description of the system given

H(s) =
2(s + 1)(s− 1)
s(s + 2)(s + 1)

=
Y (s)
X(s)

=
2s2 − 2

s3 + 3s2 + 2s

Cross multiply:

s3Y (s) + 3s2Y (s) + 2sY (s) = 2s2X(s)− 2X(s)
d3

dt3
y(t) + 3

d2

dt2
y(t) + 2

d

dt
y(t) = 2

d2

dt2
x(t)− 2x(t)
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System causality and stability

• System transfer function H(s) L←→ h(t), system impulse
response.

• In order to uniquely determine h(t), must know ROC or other
knowledge of the system characteristics.

• Causal system→ h(t) = 0 for t < 0→ H(s) is right-sided
Laplace transform.

• Stable system→ h(t) absolutely integrable→ FT of x(t) exists
→ ROC includes jω-axis.
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System causality and stability (cont.)

• Assume a pole at s = dk.

? If α = Re(dk) < 0 (pole in the left half plane) h(t) contains a
term eαt that is exponentially decaying.

? If α = Re(dk) > 0 (pole in the right half plane) h(t) contains a
term eαt that is exponentially increasing.

• Conclusion: If a system is causal and stable, then all poles of
H(s) are in the left half of the s-plane.
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System causality and stability: examples

• Example 6.21, p525: given

H(s) =
2

s + 3
+

1
s− 2

.

Determine h(t) assuming

? the system is stable
? the system is causal
? can the system be both causal and stable?



ECE352 35

System causality and stability: examples
Poles at s = −3 and s = 2.

• If the system is stable, then pole at s = −3 contributes to a
right-sided term 2e−3tu(t), and pole at s = 2 contributes to a
left-sided term −e2tu(−t) (otherwise this term is not absolutely
integrable). Thus

h(t) = 2e−3tu(t)− e2tu(−t).

• If the system is causal, then both poles must contribute to
right-sided terms, thus

h(t) = 2e−3tu(t) + e2tu(t).

• The system cannot be both causal and stable because pole at
s = 2 is in the right half of the s-plane.
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System causality and stability: examples (cont.)

• Problem 6.19(a), p526: given

d2

dt2
y(t) + 5

d

dt
y(t) + 6y(t) =

d2

dt2
x(t) + 8

d

dt
x(t) + 13x(t)

Determine h(t) assuming

? the system is stable
? the system is causal
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System causality and stability: examples (cont.)

Taking Laplace transform of both sides of the diff. equation gives

s2Y (s) + 5sY (s) + 6Y (s) = s2X(s) + 8sX(s) + 13X(s)

H(s) =
s2 + 8s + 13
s2 + 5s + 6

= 1 +
3s + 7

s2 + 5s + 6

= 1 +
1

s + 2
+

2
s + 3

Poles at s = −2 and s = −3 are in the left half of the s-plane. For
both causal and stable systems, these poles contributed to
right-sided terms. Thus, for both cases,

h(t) = δ(t) + 2e−3tu(t) + e−2tu(t).
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Freq. response from poles and zeros

• If ROC includes the jω-axis, frequency response can be
obtained as H(jω) = H(s)|s=jω.

• We examine both the magnitude and phase responses of
H(jω) using the Bode diagram approach.

For rational transfer function, the freq. response is obtained as

H(jω) =
b̃
∏M

k=1(jω − ck)∏N
k=1(jω − dk)

=
K

∏M
k=1(1−

jω
ck

)∏N
k=1(1−

jω
dk

)
, where K =

b̃
∏M

k=1(−ck)∏N
k=1(−dk)
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Freq. response from poles and zeros- Bode diagram

Magnitude and phase responses:

|H(jω)|dB = 20log10|K|+
M∑

k=1

20log10

∣∣∣∣1− jω

ck

∣∣∣∣−
N∑

k=1

20log10

∣∣∣∣1− jω

dk

∣∣∣∣
arg{H(jω)} = arg{K}+

M∑
k=1

arg

(
1− jω

ck

)
−

N∑
k=1

arg

(
1− jω

dk

)
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Freq. response from poles and zeros- Bode diagram (cont.)

Consider a pole factor (1− jω/d0) for which d0 = −ωb where ωb is
a real number.

• Approximate gain response:
−20log10

∣∣∣1 + jω
ωb

∣∣∣ = −10log10

(
1 + ω2

ω2
b

)
? Low-frequency asymptote: ω � ωb,
−10log10

(
1 + ω2

ω2
b

)
≈ −10log10(1) = 0dB

? High-frequency asymptote: ω � ωb,
−10log10

(
1 + ω2

ω2
b

)
≈ −20log10

∣∣∣ ω
ωb

∣∣∣, a straight line with a

slope of -20 dB/decade.
? The intersection frequency ωb: corner frequency or break

frequency of the Bode diagram.
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Freq. response from poles and zeros- Bode diagram (cont.)

• Approximate phase response:
−arg{1 + jω/ωb} = −arctan

(
ω
ωb

)
? ω < ωb/10: 0◦

? ωb/10 < ω < 10ωb: linearly decreases from 0◦ to −90◦.
? 10ωb < ω: −90◦
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Freq. response from poles and zeros- Bode diagram (cont.)
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Bode diagram - example

Example 6.25, p535: sketch the magnitude and phase response
as a Bode diagram for the LTI system described by transfer
function:

H(s) =
5(s + 10)

(s + 1)(s + 50)
Frequency response:

H(jω) =
1 + jω

10

(1 + jω)
(
1 + jω

50

)
• Two pole corner frequencies: ω = 1 and ω = 50

• Single zero corner frequencies: ω = 10
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Bode diagram - example (cont.)



ECE352 45

Bode diagram - example (cont.)


