Example

Example 6.10, p_{501}, Fig. 6.7 on p_{493} :

- $R C=0.2$
- Input voltage: $x(t)=(3 / 5) e^{-2 t} u(t)$
- Initial condition: $y\left(0^{-}\right)=-2$
- Find $y(t)$, the voltage across the capacitor.

Example (cont.)

$$
\begin{aligned}
\frac{d}{d t} y(t)+\frac{1}{R C} y(t) & =\frac{1}{R C} x(t) \\
\frac{d}{d t} y(t)+5 y(t) & =5 x(t), \text { taking LT of both sides॥ } \\
s Y(s)-y\left(0^{-}\right)+5 Y(s) & =5 X(s) \\
Y(s) & =\frac{1}{s+5}\left[5 X(s)+y\left(0^{-}\right)\right] \\
x(t)=(3 / 5) e^{-2 t} u(t) & \stackrel{\mathcal{L}_{u}}{\longleftrightarrow} X(s)=\frac{3 / 5}{s+2} \\
Y(s) & =\frac{3}{(s+2)(s+5)}+\frac{-2}{s+5}=\frac{-2 s-1}{(s+2)(s+5)} \\
& =\frac{1}{s+2}-\frac{3}{s+5} \\
y(t) & =e^{-2 t} u(t)-3 e^{-5 t} u(t)
\end{aligned}
$$

Natural and forced responses

- From the example, it can be seen that the output consists of two terms: a term due to input and a term due to initial conditions.
- Let $Y(s)=Y^{(f)}(s)+Y^{(n)}(s)$, where
- $Y^{(f)}(s)$ is entirely associated with the input, called the forced response (system initial rest), and
- $Y^{(n)}(s)$ is due entirely to the initial conditions, called the natural response (system input=0).

Natural and forced responses: examples

- Read example 6.11, p_{503}.
- Problem 6.9(b), p_{505} : determine the forced and the natural responses of the system described by the following differential equation and initial conditions:

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} y(t)+4 y(t) & =8 x(t) \\
x(t) & =u(t) \\
y\left(0^{-}\right) & =1 \\
\left.\frac{d}{d t} y(t)\right|_{t=0^{-}} & =2 .
\end{aligned}
$$

Natural and forced responses: examples (cont.)

- Apply Eq. (6.19) p_{494} and take LT of both sides of the differential equation:

$$
\begin{aligned}
& s^{2} Y(s)-\left(\left.\frac{d}{d t} y(t)\right|_{t=0^{-}}+\left.s y(t)\right|_{t=0^{-}}\right)+4 Y(s) \\
= & 8 X(s) \\
X(s)= & 1 / s \\
Y(s)= & \frac{8}{s\left(s^{2}+4\right)}+\frac{s+2}{s^{2}+4}, \text { where } \\
Y^{(f)}(s)= & \frac{8}{s\left(s^{2}+4\right)} \\
Y^{(n)}(s)= & \frac{s+2}{s^{2}+4}
\end{aligned}
$$

Natural and forced responses: examples (cont.)

- Forced response $Y^{(f)}(s)$: three poles at $s=0, s= \pm j 2$ (complex pole pair, $\alpha=\mathbf{0}, \omega_{0}=2$).

$$
\begin{aligned}
Y^{(f)}(s) & =\frac{A}{s}+\frac{B_{1}}{s-j 2}+\frac{B_{2}}{s+j 2} \\
A & =2 \\
B_{1} & =-1 \\
B_{2} & =-1 \\
C_{1} & =B_{1}+B_{2}=-2 \\
C_{2} & =j\left(B_{1}-B_{2}\right)=0 \\
y^{(f)}(t) & =2 u(t)+C_{1} e^{\alpha t} \cos \left(\omega_{0} t\right) u(t)+C_{2} e^{\alpha t} \sin \left(\omega_{0} t\right) \\
& =2 u(t)-2 \cos (2 t) u(t)
\end{aligned}
$$

Natural and forced responses: examples (cont.)

- Natural response $Y^{(n)}(s)$: two poles at is $= \pm j 2$ (complex pole pair, $\alpha=0, \omega_{0}=\mathbb{Z}$).

$$
\begin{aligned}
Y^{(n)}(s) & =\frac{D_{1}}{s-j 2}+\frac{D_{2}}{s+j 2} \\
D_{1} & =\frac{2+j 2}{j 4} \\
D_{2} & =\frac{-2+j 2}{j 4} \\
E_{1} & =D_{1}+D_{2}=1 \\
E_{2} & =j\left(D_{1}-D_{2}\right)=1 \\
y^{(n)}(t) & =E_{1} e^{\alpha t} \cos \left(\omega_{0} t\right) u(t)+E_{2} e^{\alpha t} \sin \left(\omega_{0} t\right) \\
& =\cos (2 t) u(t)+\sin (2 t) u(t)
\end{aligned}
$$

Laplace transform in circuit analysis

- Resistor:

$$
\begin{aligned}
v_{R}(t) & =R i_{R}(t) \\
V_{R}(s) & =R I_{R}(s)
\end{aligned}
$$

- Inductor:

$$
\begin{aligned}
v_{L}(t) & =L \frac{d}{d t} i_{L}(t) \\
V_{L}(s) & =s L I_{L}(s)-L i_{L}\left(0^{-}\right)
\end{aligned}
$$

- Capacitor:

$$
\begin{aligned}
v_{c}(t) & =\frac{1}{C} \int_{0^{-}}^{t} i_{C}(\tau) d \tau+v_{C}\left(0^{-}\right) \\
V_{c}(s) & =\frac{1}{s C} I_{C}(s)+\frac{v_{C}\left(0^{-}\right.}{s}
\end{aligned}
$$

Laplace transform in circuit analysis (cont.)

(a)

(b)

(c)

Figure 6.10 (p. 507): Laplace transform circuit models for use with Kirchhoff's voltage law. (a) Resistor. (b) Inductor with initial current $i_{L}\left(0^{-}\right)$. (c) Capacitor with initial voltage $v_{c}\left(0^{-}\right)$.

(a)

(b)

(c)

Figure 6.11 (p. 507): Laplace transform circuit models for use with Kirchhoff's current law. (a) Resistor. (b) Inductor with initial current $i_{L}\left(0^{-}\right)$. (c) Capacitor with initial voltage $v_{c}\left(0^{-}\right)$.

Laplace transform in circuit analysis: example

Example 6.13, p_{508} : determine output voltage $y(t)$ in the circuit shown in Fig. 6.12, p_{508}. Given $x(t)=2 e^{-10 t} u(t), v_{C}\left(0^{-}\right)=5 \mathrm{~V}$.

Figure 6.12 (p. 508): Electrical circuit for Example 6.13. (a) Original circuit. (b) Transformed circuit.

Laplace transform in circuit analysis (cont.)

$$
\begin{aligned}
Y(s) & =1000\left(I_{1}(s)+I_{2}(s)\right) \\
X(s) & =Y(s)+\frac{5}{s}+\frac{1}{s\left(10^{-4}\right)} I_{1}(s) \\
X(s) & =Y(s)+1000 I_{2}(s), \text { solving for } Y(s) \text { gives } \\
Y(s) & =X(s) \frac{s+10}{s+20}-\frac{5}{s+20} \\
& =\frac{2}{s+10} \frac{s+10}{s+20}-\frac{5}{s+20}=\frac{-3}{s+20} \\
y(t) & =-3 e^{-20 t} u(t)
\end{aligned}
$$

Laplace transform in circuit analysis (cont.)

- Natural response: setting the voltage or current source associated with input equal to zero.
- Forced response: setting the initial conditions equal to zero, which eliminates the voltage or current sources present in the transformed capacitor and inductor circuit models.

Properties of the bilateral Laplace transform

- Bilateral Laplace transform: $X(s)=\int_{-\infty}^{\infty} x(t) e^{-s t} d t$, well suited to problems involving noncausal signals and systems.
- Linearity, scaling (time), s-domain shift, convolution, and differentiation in the s-domain are identical for bilateral and unilateral Laplace transforms.
- The operation of these properties may change the ROC.
- Usually, ROC of a sum of signals are the interactions of the individual signals.
- ROC may be larger than the interaction of the individual ROCs if a pole and zero cancel in the sum.

Properties of the bilateral Laplace transform (cont.)

- Example:

$$
\begin{aligned}
& x(t)=e^{-2 t} u(t) \quad \stackrel{\mathcal{L}}{\longleftrightarrow} \quad X(s)=\frac{1}{s+2}, R O C \operatorname{Re}(s)>-2 \\
& y(t)=e^{-2 t} u(t)-e^{-3 t} u(t) \quad \stackrel{\mathcal{L}}{\longleftrightarrow} Y(s)=\frac{1}{(s+2)(s+3)}, \\
& R O C \operatorname{Re}(s)>-3 \\
& x(t)-y(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+3}, \operatorname{ROC} \operatorname{Re}(s)>-3
\end{aligned}
$$

- If the interactions of the ROCs is the empty set and pole-zero cancellation does not occur, then the Laplace transform of $a x(t)+b y(t)$ does not exist.

Properties of the bilateral Laplace transform (cont.)

- The bilateral Laplace transform involving time shifts, differentiation in the time domain, and integration with respect to time differ slightly from their unilateral counterparts.
- Time shift:
$x(t-\tau) \stackrel{\mathcal{L}_{u}}{\longleftrightarrow} e^{-s \tau} X(s)$, restriction :
for all τ such that $x(t-\tau) u(t)=x(t-\tau) u(t-\tau)$.
Shift is always satisfied for causal $x(t)$ with $\tau>0$ 』
$x(t-\tau) \stackrel{\mathcal{L}}{\longleftrightarrow} e^{-s \tau} X(s)$ (restriction removed)

Properties of the bilateral Laplace transform (cont.)

- Differentiation in the time domain:
$\frac{d}{d t} x(t) \stackrel{\mathcal{L}_{u}}{\longleftrightarrow} s X(s)-x\left(0^{-}\right)$!
$\frac{d}{d t} x(t) \stackrel{\mathcal{L}}{\longleftrightarrow} s X(s)$, ROC is at least $R_{x}\left(R_{x}\right.$: the ROC of $\left.X(s)\right)$. ROC of $s X(s)$ may be larger than R_{x} if $X(s)$ has a single pole at $s=0$ on the ROC boundary.

Properties of the bilateral Laplace transform (cont.)

- Integration with respect to time:

$$
\begin{aligned}
& \int_{-\infty}^{t} x(\tau) d \tau \stackrel{\mathcal{L}_{u}}{\longleftrightarrow} \frac{x^{(-1)}\left(0^{-}\right)}{s}+\frac{X(s)}{s} \\
& \int_{-\infty}^{t} x(\tau) d \tau \quad \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{X(s)}{s}, \text { with ROC } R_{x} \cap \operatorname{Re}(s)>0
\end{aligned}
$$

- The initial- and final-value theorems apply to the bilateral transform, with the additional restriction that $x(t)=0$ for $t<0$.

Properties of the ROC

- Bilateral Laplace transform is not unique, unless the ROC is specified.
- ROC is related to the characteristics of the signal.
- ROC cannot contain any poles.
- Left-sided signals (LSS): a signal for which $x(t)=0$ for $t>b$. II
- Right-sided signals (RSS): a signal for which $x(t)=0$ for $t<a$. -
- Two-sided signals (TSS): a signal that is infinite in extent in both directions.

Properties of the ROC (cont.)

- ROC of an LSS signal is of the form $\sigma<\sigma_{n}$.
- ROC of an RSS signal is of the form $\sigma>\sigma_{p}$.
- ROC of a TSS signal is of the form $\sigma_{p}<\sigma<\sigma_{n}$. I
- Boundaries are determined by pole locations.

Properties of the ROC: example

Example: determine the ROC of $x_{1}(t)=e^{-2 t} u(t)+e^{-t} u(-t)$:

- $e^{-2 t} u(t)$: RSS, pole at $s=-2, \operatorname{ROC}: \operatorname{Re}(s)>-2$
- $e^{-t} u(-t)$: LSS, pole at $s=-1, \operatorname{ROC}: \operatorname{Re}(s)<-1$.
- ROC of $x_{1}(t):-2<\operatorname{Re}(s)<-1$, a strip of the s-plane located between poles.

Properties of the ROC: example (cont.)

Example: determine the ROCs of $x_{2}(t)=e^{-t} u(t)+e^{-2 t} u(-t)$:

- $e^{-t} u(t):$ RSS, pole at $s=-1, \operatorname{ROC}: \operatorname{Re}(s)>-1$
- $e^{-2 t} u(-t)$: LSS, pole at $s=-2$, ROC: $\operatorname{Re}(s)<-2$.
- ROC of $x_{2}(t)$ is an empty set. Laplace transform of $x_{2}(t)$ does not exist.

Properties of the ROC: example (cont.)

Example: determine the ROCs of $x_{3}(t)=e^{-b|t|}$:

- $x(t)=e^{-b t} u(t)+e^{b t} u(-t)$
- $e^{-b t} u(t)$: RSS, pole at $\mathrm{i}=-b$, $\operatorname{ROC} \operatorname{Re}(s)>-b . e^{b t} u(-t)$: LSS, pole at $\mathrm{i}=b, \operatorname{ROC} \operatorname{Re}(s)<b$.
- Case 1: $b>0$.

ROC of $x_{3}(t):-b<\operatorname{Re}(s)<b$

- Case 2: $b<0$.

ROC of $x_{3}(t)$ is an empty set. Laplace transform of $x_{3}(t)$ does not exist.

Inversion of the bilateral Laplace transforms

- Primary difference between unilateral and bilateral Laplace transforms is that we must use the ROC to determine a unique inverse transform in the bilateral case.
- $A_{k} e^{d_{k} t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{A_{k}}{s-d_{k}}$, with ROC $\operatorname{Re}(s)>d_{k}$ (right-sided transform pair).
- $-A_{k} e^{d_{k} t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{A_{k}}{s-d_{k}}$, with ROC $\operatorname{Re}(s)<d_{k}$ (left-sided transform pair).

Inversion of the bilateral Laplace transforms: examples

Example 6.17, p_{517} : Find $x(t)$ given

$$
X(s)=\frac{-5 s-7}{(s+1)(s-1)(s+2)}, \text { with ROC }-1<\operatorname{Re}(s)<1
$$

Partial-fraction expansion of $X(s)$:

$$
X(s)=\frac{1}{s+2}+\frac{1}{s+1}-\frac{2}{s-1}
$$

Inversion of the bilateral Laplace transforms: examples (cont.)

- Poles at $s=-2$.

Right-sided inverse: $e^{-2 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+2}$
Left-sided inverse: $\|-e^{-2 t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+2}$

- Correct choice: the right-sided inverse Laplace transform.

Inversion of the bilateral Laplace transforms: examples (cont.)

- Poles at $s=-1$.

Right-sided inverse: $\bar{e}^{-t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+1}$
Left-sided inverse: $\|-e^{-t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{1}{s+1}$

- Correct choice: the right-sided inverse Laplace transform.

Inversion of the bilateral Laplace transforms: examples (cont.)

- Poles at $s=1$.

- Correct choice: the left-sided inverse Laplace transform.
- Thus, $x(t)=e^{-2 t} u(t)+e^{-t} u(t)+2 e^{t} u(-t)$.

Inversion of the bilateral Laplace transforms: examples (cont.)

- Read Example 6.18, p_{518}.
- Problem 6.14, p_{518} : find $x(t)$ of

$$
X(s)=\frac{s^{4}+3 s^{3}-4 s^{2}+5 s+5}{s^{2}+3 s-4}, \text { with ROC }-4<\operatorname{Re}(s)<1
$$

Long division and then partial fraction expansion:

$$
X(s)=s^{2}+\frac{5 s+5}{(s-1)(s+4)}=s^{2}+\frac{2}{s-1}+\frac{3}{s+4}
$$

Inversion of the bilateral Laplace transforms: examples (cont.)

- For pole at $s=1, \frac{2}{s-1}$ corresponds to a left-sided signal with the given ROC. Thus,

$$
-2 e^{t} u(-t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{2}{s-1}
$$

- For pole at $s=-4, \frac{3}{s+4}$ corresponds to a right-sided signal with the given ROC. Thus,

$$
3 e^{-4 t} u(t) \stackrel{\mathcal{L}}{\longleftrightarrow} \frac{3}{s+4}
$$

- Thus, $x(t)=\delta^{(2)}(t)-2 e^{t} u(-t)+3 e^{-4 t} u(t)$

The Transfer Function

- For LTI systems: $y(t)=x(t) * h(t), Y(s)=X(s) H(s)$.

$$
H(s)=\frac{Y(s)}{X(s)}
$$

- For a system described by the input-output differential equation:

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} \frac{d^{k}}{d t^{k}} y(t)=\sum_{k=0}^{M} b_{k} \frac{d^{k}}{d t^{k}} x(t) \\
& H(s)=\frac{Y(s)}{X(s)}=\frac{\sum_{k=0}^{M} b_{k} s^{k}}{\sum_{k=0}^{N} a_{k} s^{k}}=\frac{\tilde{b} \prod_{k=0}^{M}\left(s-c_{k}\right)}{\prod_{k=0}^{N}\left(s-d_{k}\right)}, \tilde{b}=\frac{b_{M}}{a_{N}}
\end{aligned}
$$

The Transfer Function: examples

- $H(s)$ is the ratio of two polynomials in s, and is termed a rational transfer function.
- Read Example 6.19, p_{521}.
- Problem 6.17(b), p_{521} : find $H(s)$ given

$$
\begin{aligned}
& \frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)+3 y(t)=4 \frac{d}{d t} x(t) \\
& s^{3} Y(s)-s^{2} Y(s)+3 Y(s)=4 s X(s) \\
& H(s)=\frac{Y(s)}{X(s)}=\frac{4 s}{s^{3}-s^{2}+3}
\end{aligned}
$$

The Transfer Function: examples (cont.)

- Problem 6.18(b), p_{522} : determine the differential-equation description of the system given

$$
\begin{aligned}
H(s) & =\frac{2(s+1)(s-1)}{s(s+2)(s+1)} \\
& =\frac{Y(s)}{X(s)}=\frac{2 s^{2}-2}{s^{3}+3 s^{2}+2 s}
\end{aligned}
$$

Cross multiply:

$$
\begin{aligned}
s^{3} Y(s)+3 s^{2} Y(s)+2 s Y(s) & =2 s^{2} X(s)-2 X(s) \\
\frac{d^{3}}{d t^{3}} y(t)+3 \frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t) & =2 \frac{d^{2}}{d t^{2}} x(t)-2 x(t)
\end{aligned}
$$

System causality and stability

- System transfer function $H(s) \stackrel{\mathcal{L}}{\longleftrightarrow} h(t)$, system impulse response.
- In order to uniquely determine $h(t)$, must know ROC or other knowledge of the system characteristics.
- Causal system $\rightarrow h(t)=0$ for $t<0 \rightarrow H(s)$ is right-sided Laplace transform.
- Stable system $\rightarrow h(t)$ absolutely integrable $\rightarrow \mathrm{FT}$ of $x(t)$ exists \rightarrow ROC includes $j \omega$-axis.

System causality and stability (cont.)

- Assume a pole at $s=d_{k}$.
* If $\alpha=\operatorname{Re}\left(d_{k}\right)<0$ (pole in the left half plane) $h(t)$ contains a term $e^{\alpha t}$ that is exponentially decaying.
* If $\alpha=\operatorname{Re}\left(d_{k}\right)>0$ (pole in the right half plane) $h(t)$ contains a term $e^{\alpha t}$ that is exponentially increasing.
- Conclusion: If a system is causal and stable, then all poles of $H(s)$ are in the left half of the s-plane.

System causality and stability: examples

- Example 6.21, p_{525} : given

$$
H(s)=\frac{2}{s+3}+\frac{1}{s-2} .
$$

Determine $h(t)$ assuming
the system is stable
the system is causal
can the system be both causal and stable?

System causality and stability: examples

Poles at $s=-3$ and $s=2$.

- If the system is stable, then pole at $s=-3$ contributes to a right-sided term $2 e^{-3 t} u(t)$, and pole at $s=2$ contributes to a left-sided term $-e^{2 t} u(-t)$ (otherwise this term is not absolutely integrable). Thus

$$
h(t)=2 e^{-3 t} u(t)-e^{2 t} u(-t) .
$$

- If the system is causal, then both poles must contribute to right-sided terms, thus

$$
h(t)=2 e^{-3 t} u(t)+e^{2 t} u(t) .
$$

- The system cannot be both causal and stable because pole at $s=2$ is in the right half of the s-plane.

System causality and stability: examples (cont.)

- Problem 6.19(a), p_{526} : given

$$
\frac{d^{2}}{d t^{2}} y(t)+5 \frac{d}{d t} y(t)+6 y(t)=\frac{d^{2}}{d t^{2}} x(t)+8 \frac{d}{d t} x(t)+13 x(t)
$$

Determine $h(t)$ assuming

* the system is stable
the system is causal

System causality and stability: examples (cont.)

Taking Laplace transform of both sides of the diff. equation gives

$$
\begin{aligned}
s^{2} Y(s)+5 s Y(s)+6 Y(s) & =s^{2} X(s)+8 s X(s)+13 X(s) \\
H(s) & =\frac{s^{2}+8 s+13}{s^{2}+5 s+6}=1+\frac{3 s+7}{s^{2}+5 s+6} \\
& =1+\frac{1}{s+2}+\frac{2}{s+3}
\end{aligned}
$$

Poles at $s=-2$ and $s=-3$ are in the left half of the s-plane. For both causal and stable systems, these poles contributed to right-sided terms. Thus, for both cases,

$$
h(t)=\delta(t)+2 e^{-3 t} u(t)+e^{-2 t} u(t) .
$$

Freq. response from poles and zeros

- If ROC includes the $j \omega$-axis, frequency response can be obtained as $H(j \omega)=\left.H(s)\right|_{s=j \omega}$.
- We examine both the magnitude and phase responses of $H(j \omega)$ using the Bode diagram approach.

For rational transfer function, the freq. response is obtained as

$$
\begin{aligned}
H(j \omega) & =\frac{\tilde{b} \prod_{k=1}^{M}\left(j \omega-c_{k}\right)}{\prod_{k=1}^{N}\left(j \omega-d_{k}\right)} \\
& =\frac{K \prod_{k=1}^{M}\left(1-\frac{j \omega}{c_{k}}\right)}{\prod_{k=1}^{N}\left(1-\frac{j \omega}{d_{k}}\right)}, \text { where } K=\frac{\tilde{b} \prod_{k=1}^{M}\left(-c_{k}\right)}{\prod_{k=1}^{N}\left(-d_{k}\right)}
\end{aligned}
$$

Freq. response from poles and zeros-Bode diagram
Magnitude and phase responses:

$$
\begin{aligned}
|H(j \omega)|_{d B}= & 20 \log _{10}|K|+\sum_{k=1}^{M} 20 \log _{10}\left|1-\frac{j \omega}{c_{k}}\right|- \\
& \sum_{k=1}^{N} 20 \log _{10}\left|1-\frac{j \omega}{d_{k}}\right| \\
\arg \{H(j \omega)\}= & \arg \{K\}+\sum_{k=1}^{M} \arg \left(1-\frac{j \omega}{c_{k}}\right)-\sum_{k=1}^{N} \arg \left(1-\frac{j \omega}{d_{k}}\right)
\end{aligned}
$$

Freq. response from poles and zeros-Bode diagram (cont.)
Consider a pole factor $\left(1-j \omega / d_{0}\right)$ for which $d_{0}=-\omega_{b}$ where ω_{b} is a real number.

- Approximate gain response:

$$
-20 \log _{10}\left|1+\frac{j \omega}{\omega_{b}}\right|=-10 \log _{10}\left(1+\frac{\omega^{2}}{\omega_{b}^{2}}\right)
$$

* Low-frequency asymptote: $\omega \ll \omega_{b}$, $-10 \log _{10}\left(1+\frac{\omega^{2}}{\omega_{b}^{2}}\right) \approx-10 \log _{10}(1)=0 d B$
* High-frequency asymptote: $\omega \gg \omega_{b}$,
$-10 \log _{10}\left(1+\frac{\omega^{2}}{\omega_{b}^{2}}\right) \approx-20 \log _{10}\left|\frac{\omega}{\omega_{b}}\right|$, a straight line with a slope of -20 dB/decade.
The intersection frequency ω_{b} : corner frequency or break frequency of the Bode diagram.

Freq. response from poles and zeros-Bode diagram (cont.)

- Approximate phase response:
$-\arg \left\{1+j \omega / \omega_{b}\right\}=-\arctan \left(\frac{\omega}{\omega_{b}}\right)$
* $\omega<\omega_{b} / 10: 0^{\circ}$
* $\omega_{b} / 10<\omega<10 \omega_{b}$: linearly decreases from 0° to -90°.
* $10 \omega_{b}<\omega:-90^{\circ}$

Freq. response from poles and zeros-Bode diagram (cont.)

(a)

(b)

Bode diagram - example

Example 6.25, p_{535} : sketch the magnitude and phase response as a Bode diagram for the LTI system described by transfer function:

$$
H(s)=\frac{5(s+10)}{(s+1)(s+50)}
$$

Frequency response:

$$
H(j \omega)=\frac{1+\frac{j \omega}{10}}{(1+j \omega)\left(1+\frac{j \omega}{50}\right)}
$$

- Two pole corner frequencies: $\omega=1$ and $\omega=50$
- Single zero corner frequencies: $\omega=10$

Bode diagram - example (cont.)

Bode diagram - example (cont.)

