Chapter 7: The *z***-Transform**

• Discrete-time signals

• FT does not exist for signals that are not absolutely integrable.

• More general form: a transform as a function of an arbitrary point in the 2-dimensional plane: Laplace transform.

- DTFT does not exist for signals that are not absolutely summable.
- More general form: a transform as a function of an arbitrary circle in the 2-dimensional plane: z-transform.

The *z***-Transform - definition**

• Continuous-time systems: $e^{st} \to H(s) \Rightarrow y(t) = e^{st}H(s)$ $\star e^{st}$ is an eigenfunction of the LTI system h(t), and H(s) is the

corresponding eigenvalue.

• Discrete-time systems: $x[n] = z^n \rightarrow h[n] \Rightarrow y[n]$

$$y[n] = \mathbf{k}[n] * h[n] = \sum_{k=-\infty}^{\infty} h[k]x[n-k]$$
$$= \sum_{k=-\infty}^{\infty} h[k]z^{n-k} = z^n \left(\sum_{k=-\infty}^{\infty} h[k]z^{-k}\right) = z^n H(z)$$

★ z^n is an eigenfunction of the LTI system h[n], and H(z) is the corresponding eigenvalue.

The *z*-Transform - definition (cont.)

The *transfer function*:

$$H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k}.$$

Generally, let $z = re^{j\Omega}$. Then,

$$H(re^{j\Omega}) = \sum_{n=-\infty}^{\infty} \left(h[n]z^{-n}\right)e^{-j\Omega n}.$$

Thus, H(z) is the DTFT of $h[n]r^{-n}$. The inverse DTFT of $H(re^{j\Omega})$ must be $h[n]r^{-n}$.

The *z*-Transform - definition (cont.)

So we may write

$$h[n]r^{-n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(re^{j\Omega})e^{j\Omega n}d\Omega.$$

•
$$z = re^{j\Omega} \rightarrow dz = jre^{j\Omega}d\Omega$$
. $d\Omega = \frac{1}{j}z^{-1}dz$.

• As Ω goes from $-\pi$ to π , z traverses a circle of radius r in a counterclockwise direction. Thus, we may write

$$h[n] = \frac{1}{2\pi j} \oint H(z) z^{n-1} dz$$

The *z*-Transform - definition (cont.)

For an arbitrary signal x[n], the *z*-transform and inverse *z*-transform are expressed as

$$X(z) = \sum_{n=-\infty}^{\infty} x[n] z^{-n}$$
$$x[n] = \frac{1}{2\pi j} \oint X(z) z^{n-1} dz$$

We express this relationship between x[n] and X(z) as

$$x[n] \xleftarrow{z} X(z)$$

The *z***-Transform - convergence**

- A necessary condition for convergence: $\sum_{n=-\infty} |x[n]r^{-n}| < \infty$ (absolute summability)
- The range of r for which this condition is satisfied is termed the region of convergence (ROC).
- Complex number z is represented as a location in a complex plane, termed the z-plane.
- If x[n] is absolutely summable, then the DTFT of x[n] is obtained as

$$X(e^{j\Omega}) = X(z)|_{z=e^{j\Omega}}$$

• The contour $z = e^{j\Omega}$ is termed the *unit circle*.

The *z***-Transform - poles and zeros**

The most commonly encountered form of the *z*-transform is a ratio of two polynomials in z^{-1} , as shown by the *rational function*

$$X(z) = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$
$$= \frac{\tilde{b} \prod_{k=1}^M (1 - c_k z^{-1})}{\prod_{k=1}^N (1 - d_k z^{-1})}$$

• $\tilde{b} = b_0/a_0$.

- c_k : zeros of X(z). Denoted with the " \circ " symbol in the z plane.
- d_k : poles of X(z). Denoted with the " \times " symbol in the z plane.

The *z***-Transform - Review of commonly used series**

• Geometric series: Let $s_n = a + ar + ar^2 + \cdots + ar^n$, then

$$s_n = \frac{a(1-r^{n+1})}{1-r}$$
$$\lim_{n \to \infty} s_n = \frac{a}{1-r}, \text{ if } |r| < 1$$

Proof:

$$s_n = a + ar + ar^2 + \dots + ar^n$$

$$rs_n = ar + ar^2 + \dots + ar^n + ar^{n+1}$$

$$s_n - rs_n = a(1 - r^{n+1})$$

$$s_n = \frac{a(1 - r^{n+1})}{1 - r}$$

The *z*-Transform - Review of commonly used series (cont.)

• Arithmetic progression: Let

 $s_n = a + (a + r) + (a + 2r) + \dots + (a + nr)$, then

$$s_n = \frac{(n+1)(a+(a+nr))}{2}$$
$$\lim_{n \to \infty} s_n = \infty, \text{ if } r > 0$$
$$\lim_{n \to \infty} s_n = -\infty, \text{ if } r < 0$$

Proof:

$$s_n = a + (a + r) + (a + 2r) + \dots + (a + nr)$$

$$s_n = (a + nr) + (a + (n - 1)r) + \dots + (a + r) + a$$

$$2s_n = (n + 1)(a + (a + nr)) \rightarrow s_n = (n + 1)(a + (a + nr))/2$$

The *z*-Transform - Review of commonly used series (cont.)

•
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

•
$$\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \dots = \frac{\pi^2}{24}$$

The *z*-Transform - Convergence of commonly used series

•
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 for $p > 0$:

- \star Convergent, if p > 1
- \star Divergent, if $p \leq 1$.

Example:

The *z*-Transform - Convergence of commonly used series (cont.)

- Ratio test: Suppose $\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} = r$.
 - \star r > 1: divergent
 - \star r < 1: convergent
 - \star r = 1: test gives no information
- Comparison test: Assume $0 \le a_n \le b_n$, $\forall n$.
 - * If $\sum b_n$ is convergent $\Rightarrow \sum a_n$ is convergent (For convenience, we use $\sum b_n$ to represent an infinite series in the notes)

Example: Let
$$a_n = \frac{2n}{3n^3 - 1}, \ b_n = \frac{1}{n^2}.$$

 $\sum b_n$ is convergent. Thus, $\sum a_n$ is convergent because $n \ge 1 \rightarrow n^3 \ge 1 \rightarrow 3n^3 - 1 \ge 2n^3 \Rightarrow a_n \le b_n$.

The *z*-Transform - Convergence of commonly used series (cont.)

• Corollary of comparison test (limiting form): Suppose that $a_n > 0, \ b_n > 0$ and then $\lim_{n \to \infty} \frac{a_n}{b_n} = k > 0$.

$$\sum a_n$$
 convergent $\stackrel{iff}{\longleftrightarrow} \sum b_n$ convergent

Example: Let
$$a_n = \frac{n}{n^2 + 1}$$
, $b_n = \frac{1}{n}$.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^2 + 1} = 1.$$
Because $\sum b_n$ is divergent $\Rightarrow \sum a_n$ is divergent.

The *z*-Transform - Convergence of commonly used series (cont.)

• Necessary condition for convergence of $\sum a_n$:

$$\lim_{n \to \infty} = a_n = 0$$

• It is not a sufficient condition. For example, $a_n = \frac{1}{n}$, $\sum a_n$ is divergent.

The *z***-Transform - Examples**

Determine the *z*-transform of the following signals and depict the ROC and the locations of the poles and zeros of X(z) in the *z*-plane:

•
$$x[n] = \alpha^n u[n]$$
 (causal signal)

•
$$x[n] = -\alpha^n u[-n-1]$$
 (anticausal signal)

For signal $x[n] = \alpha^n u[n]$:

$$X(z) = \sum_{n=-\infty}^{\infty} \alpha^n u[n] z^{-n}$$
$$= \sum_{n=0}^{\infty} \left(\frac{\alpha}{z}\right)^n.$$

The *z*-Transform - Examples (cont.)

This infinite series converges to

$$X(z) = \frac{1}{1 - \alpha z^{-1}} = \frac{z}{z - \alpha}, \text{ for } |z| > |\alpha|.$$

For signal $x[n] = -\alpha^n u[-n-1]$:

$$\begin{aligned} X(z) &= \sum_{n=-\infty}^{\infty} \left(-\alpha^n u [-n-1] z^{-n} \right) \\ &= -\sum_{n=-\infty}^{-1} \left(\frac{\alpha}{z} \right)^n \\ &= -\sum_{k=-1}^{-\infty} \left(\frac{\alpha}{z} \right)^k = 1 - \sum_{k=0}^{-\infty} \left(\frac{\alpha}{z} \right)^k \\ &= 1 - \frac{1}{1 - z\alpha^{-1}} = \frac{z}{z - \alpha}, \quad \text{for } |z| < |\alpha|. \end{aligned}$$

The *z*-Transform - Examples (cont.)

Observations:

- As bilateral Laplace transform, the relationship between x[n] and X(z) is not unique.
- The ROC differentiates the two transforms.
- We must know the ROC to determine the correct inverse z-transform.

The *z*-Transform - Examples (cont.)

- Read Example 7.4, p_{560} .
- Problem 7.1(c), p_{561} : Determine the *z*-transform, the ROC, and the locations of poles and zeros of X(z) for the following signal

$$x[n] = -\left(\frac{3}{4}\right)^n u[-n-1] + \left(-\frac{1}{3}\right)^n u[n]$$

Using the results given in the previous two slides:

$$-\left(\frac{3}{4}\right)^{n} u[-n-1] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{z}{z-3/4}$$
$$\left(-\frac{1}{3}\right)^{n} u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{z}{z+1/3}$$

Thus,
$$X(z) = \frac{z}{z - 3/4} + \frac{z}{z + 1/3} = \frac{z(2z - 5/12)}{(z - 3/4)(z + 1/3)}$$

Properties of the ROC

- As the Laplace transform, the ROC cannot contain any poles.
- ROC for a finite-duration signal includes the entire *z*-plane, except possibly z = 0 or $z = \infty$ or both.
- Left-sided sequence: x[n] = 0 for $n \ge 0$ (notice the difference between the left-sided signal for Laplace transform).
- Right-sided sequence: x[n] = 0 for n < 0
- Two-sided sequence: a signal that has infinite duration in both the positive and negative directions.

Properties of the ROC

- RSS: ROC is of the form $|z| > r_+$
- LSS: ROC is of the form $|z| < r_{-}$
- TSS: ROC if of the form $r_+ < |z| < r_-$

where the boundaries r_+ and r_- are determined by the pole locations. See the figure next page.

Properties of the ROC - Examples

Example 7.5, identify the ROC associated with the z-transform for each of the following signals.

•
$$x[n] = (-1/2)^n u[-n] + 2(1/4)^n u[n]$$

•
$$y[n] = (-1/2)^n u[n] + 2(1/4)^n u[n]$$

•
$$w[n] = (-1/2)^n u[-n] + 2(1/4)^n u[-n]$$

For x[n], the *z*-transform is written as

$$X(z) = \sum_{n=-\infty}^{0} \left(\frac{-1}{2z}\right)^{n} + 2\sum_{n=0}^{\infty} \left(\frac{1}{4z}\right)^{n}$$
$$= \sum_{k=0}^{\infty} (-2z)^{k} + 2\sum_{n=0}^{\infty} \left(\frac{1}{4z}\right)^{n}$$

- The first sum converges for $|z| < \frac{1}{2}$.
- The second sum converges for $|z| > \frac{1}{4}$.
- Thus, the ROC is $\frac{1}{4} < z < \frac{1}{2}$. Summing the two geometric series:

$$X(z) = \frac{1}{1+z^2} + \frac{2z}{z-1/4}.$$

Observations:

- The first term on the right side of z[n] is a left-sided sequence.
 Its ROC is |z| < r_, where r_ is determined by its pole location.
- The second term on the right side of z[n] is a right-sided sequence. Its ROC is |z| > r₊, where r₊ is determined by its pole location.

For y[n], both terms are right-sided sequences. Thus, the ROC is $|z| > r_+$, where r_+ is determined by the pole locations.

$$Y(z) = \sum_{n=0}^{\infty} \left(\frac{-1}{2z}\right)^n + 2\sum_{n=0}^{\infty} \left(\frac{1}{4z}\right)^n$$

The first series converges for |z| > 1/2 and the second series converges for |z| > 1/4. Thus, the ROC is |z| > 1/2, and we write Y(z) as

$$Y(z) = \frac{z}{z+1/2} + \frac{2z}{z-1/4}$$

For w[n], both terms are left-sided sequences. Thus, the ROC is $|z| < r_{-}$, where r_{-} is determined by the pole locations.

$$W(z) = \sum_{n=-\infty}^{0} \left(\frac{-1}{2z}\right)^{n} + 2\sum_{n=-\infty}^{0} \left(\frac{1}{4z}\right)^{n}$$
$$= \sum_{k=0}^{\infty} (-2z)^{k} + 2\sum_{k=0}^{\infty} (4z)^{k}$$

- The first series converges for |z| < 1/2.
- The second series converges for |z| < 1/4.
- Thus, the ROC is |z| < 1/4, and we write W(z) as

$$W(z) = \frac{1}{1+2z} + \frac{2}{1-4z}$$

The pole locations of sequences z[n], y[n], w[n] are shown in the figure next slide.

Properties of the *z***-transform**

Linearity

* Let $x[n] \xleftarrow{z} X(z)$ (ROC R_x) and $y[n] \xleftarrow{z} Y(z)$.

 $\star ax[n] + by[n] \xleftarrow{z} aX(z) + bY(z)$, with ROC at least $R_x \bigcap R_y$

- * The ROC can be larger than the intersection if one or more terms in x[n] or y[n] cancel each other in the sum.
- * In the *z*-plane, this corresponds to a zero canceling a pole that defines one of the ROC boundaries.

Example: Example 7.5, p_{567} . Suppose

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - \left(\frac{3}{2}\right)^n u[-n-1] \xleftarrow{z} X(z) = \frac{-z}{(z-1/2)(z-3/2)}$$

with ROC 1/2 < |z| < 3/2, and

$$y[n] = \left(\frac{1}{4}\right)^n u[n] - \left(\frac{1}{2}\right)^n u[n] \xleftarrow{z} Y(z) = \frac{-\frac{1}{4}z}{(z-1/4)(z-1/2)}$$

with ROC |z| > 1/2. Evaluate the *z*-transform of ax[n] + by[n], where *a* and *b* are constants.

Using the linearity property, we have

$$ax[n] + by[n] \xleftarrow{z} a \frac{-z}{(z-1/2)(z-3/2)} + b \frac{-\frac{1}{4}z}{(z-1/4)(z-1/2)}$$

Must be careful in determining ROC. In general, the ROC is the intersection of individual ROCs. For some special cases, however, the ROC could be larger. For instance, let a = b = 1.

Then,

$$aX(z) + bY(z) = \frac{-z}{(z - 1/2)(z - 3/2)} + \frac{-\frac{1}{4}z}{(z - 1/4)(z - 1/2)}$$
$$= \frac{-\frac{5}{4}z(z - 1/2)}{(z - 1/4)(z - 1/2)(z - 3/2)}$$
$$= \frac{-\frac{5}{4}z}{(z - 1/4)(z - 3/2)}$$

The ROC can be verified to be 1/4 < |z| < 3/2 because the pole-zero cancellation (z = 1/2), and the $(1/2)^n u[n]$ no longer presents.

Time reversal

★ x[-n] $\stackrel{z}{\longleftrightarrow} X\left(\frac{1}{z}\right)$ with ROC $\frac{1}{R_x}$.
★ If R_x is of the form a < |z| < b, the ROC of the reflected signal is 1/b < |z| < 1/a.

• Time shift

- * $x[n n_0] \xleftarrow{z} z^{-n_0} X(z)$ with ROC R_x , except possibly z = 0and $z = \infty$.
- * If $n_0 > 0$, z^{-n_0} introduces a pole z = 0.
- ★ If $n_0 < 0$, z^{-n_0} introduces a pole $z = \pm \infty$.

Multiplication by an exponential sequence

 $\star \alpha^n x[n] \xleftarrow{z} X\left(\frac{z}{\alpha}\right)$ with ROC $|\alpha|R_x$.

 \star $|\alpha|R_x$ implies that the ROC boundaries are multiplied by $|\alpha|$.

 \star If $|\alpha| = 1$, then the ROC is unchanged.

Convolution

- $\star x[n] \star y[n] \xleftarrow{z} X(z)Y(z)$ with ROC at least $R_x \bigcap R_y$.
- * The ROC may be larger than the intersection of R_x and R_y if a pole-zero cancellation occurs in the product of X(z)Y(z).

• Differentiation in the *z*-domain

*
$$nx[n] \xleftarrow{z}{\longrightarrow} -z \frac{d}{dz} X(z)$$
, with ROC R_x .

• Read Example 7.8, p_{570} .

Example: Example 7.7, p_{570} . Find the *z*-transform of

$$x[n] = \left(n\left(\frac{-1}{2}\right)^n u[n]\right) * \left(\frac{1}{4}\right)^{-n} u[-n].$$

Properties of the *z***-transform: example**

- Basic signal of first term: $\left(\frac{-1}{2}\right)^n u[n] \xleftarrow{z}{z+1/2}$, with ROC |z| > 1/2.
- Applying the *z*-domain differentiation property:

$$n\left(\frac{-1}{2}\right)^{n}u[n] \stackrel{z}{\longleftrightarrow} \qquad -z\frac{d}{dz}\frac{z}{z+1/2}$$
$$= \frac{-\frac{1}{2}z}{(z+1/2)^{2}}, \text{ with ROC } |z| > 1/2$$

Properties of the *z***-transform: example (cont.)**

- Applying time reversal property: $(\frac{1}{4})^n u[n] \xleftarrow{z} \frac{z}{z-1/4}$, with ROC |z| > 1/4. Thus, $(\frac{1}{4})^{-n} u[-n] \xleftarrow{1/z} \frac{1/z}{1/z-1/4} = \frac{-4}{z-4}$ with ROC |z| < 4
- Applying convolution property: $x[n] \xleftarrow{z} \frac{2z}{(z-4)(z+1/2)^2}$, with ROC $\frac{1}{2} < |z| < 4$.