Chapter 7: The z-Transform

- Continuous-time signals

- FT does not exist for signals that are not absolutely integrable.
- More general form: a transform as a function of an arbitrary point in the 2-dimensional plane: Laplace transform.
- Discrete-time signals

- DTFT does not exist for signals that are not absolutely summable.
- More general form: a transform as a function of an arbitrary circle in the 2-dimensional plane: z-transform.

The z-Transform - definition

- Continuous-time systems: $e^{s t} \rightarrow H(s) \Rightarrow y(t)=e^{s t} H(s)$
* $e^{s t}$ is an eigenfunction of the LTI system $h(t)$, and $H(s)$ is the corresponding eigenvalue.
- Discrete-time systems: $x[n]=z^{n} \rightarrow h[n] \Rightarrow y[n]$

$$
\begin{aligned}
y[n] & =x[n] * h[n]=\| \sum_{k=-\infty}^{\infty} h[k] x[n-k] \\
& =\sum_{k=-\infty}^{\infty} h[k] z^{n-k}=z^{n}\left(\sum_{k=-\infty}^{\infty} h[k] z^{-k}\right)=z^{n} H(z)
\end{aligned}
$$

z^{n} is an eigenfunction of the LTI system $h[n]$, and $H(z)$ is the corresponding eigenvalue.

The z-Transform - definition (cont.)

The transfer function:

$$
H(z)=\sum_{k=-\infty}^{\infty} h[k] z^{-k}
$$

Generally, let $z=r e^{j \Omega}$. Then,

$$
H\left(r e^{j \Omega}\right)=\sum_{n=-\infty}^{\infty}\left(h[n] z^{-n}\right) e^{-j \Omega n}
$$

Thus, $H(z)$ is the DTFT of $h[n] r^{-n}$. The inverse DTFT of $H\left(r e^{j \Omega}\right)$ must be $h[n] r^{-n}$.

The z-Transform - definition (cont.)

So we may write

$$
h[n] r^{-n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} H\left(r e^{j \Omega}\right) e^{j \Omega n} d \Omega
$$

- $z=r e^{j \Omega} \rightarrow d z={ }^{j} r e^{j \Omega} d \Omega . d \Omega=\frac{1}{j} z^{-1} d z$.
- As Ω goes from $-\pi$ to π, z traverses a circle of radius r in a counterclockwise direction. Thus, we may write

$$
h[n]=\frac{1}{2 \pi j} \oint H(z) z^{n-1} d z
$$

The z-Transform - definition (cont.)

For an arbitrary signal $x[n]$, the z-transform and inverse z-transform are expressed as

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} x[n] z^{-n} \\
x[n] & =\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
\end{aligned}
$$

We express this relationship between $x[n]$ and $X(z)$ as

$$
x[n] \stackrel{z}{\longleftrightarrow} X(z)
$$

The z-Transform - convergence

- A necessary condition for convergence: $\sum_{n=-\infty}^{\infty}\left|x[n] r^{-n}\right|<\infty$ (absolute summability) II
- The range of r for which this condition is satisfied is termed the region of convergence (ROC). II
- Complex number z is represented as a location in a complex plane, termed the z-plane. II
- If $x[n]$ is absolutely summable, then the DTFT of $x[n]$ is obtained as

$$
X\left(e^{j \Omega}\right)=\left.X(z)\right|_{z=e^{j \Omega}}
$$

- The contour $z=e^{j \Omega}$ is termed the unit circle.

The z-Transform - poles and zeros

The most commonly encountered form of the z-transform is a ratio of two polynomials in z^{-1}, as shown by the rational function

$$
\begin{aligned}
X(z) & =\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}} \\
& =\frac{\tilde{b} \prod_{k=1}^{M}\left(1-c_{k} z^{-1}\right)}{\prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)}
\end{aligned}
$$

- $\tilde{b}=b_{0} / a_{0}$.
- c_{k} : zeros of $X(z)$. Denoted with the " ${ }^{\prime \prime}$ "symbol in the z plane.
- d_{k} : poles of $X(z)$. Denoted with the " \times " symbol in the z plane.

The z-Transform - Review of commonly used series

- Geometric series: Let $s_{n}=a+a r+a r^{2}+\cdots+a r^{n}$, then

$$
\begin{aligned}
s_{n} & =\frac{a\left(1-r^{n+1}\right)}{1-r} \\
\lim _{n \rightarrow \infty} s_{n} & =\frac{a}{1-r}, \text { if }|r|<1
\end{aligned}
$$

Proof:

$$
\begin{aligned}
s_{n} & =a+a r+a r^{2}+\cdots+a r^{n} \\
r s_{n} & =a r+a r^{2}+\cdots+a r^{n}+a r^{n+1} \\
s_{n}-r s_{n} & =a\left(1-r^{n+1}\right) \\
s_{n} & =\frac{a\left(1-r^{n+1}\right)}{1-r}
\end{aligned}
$$

The z-Transform - Review of commonly used series (cont.)

- Arithmetic progression: Let

$$
\begin{aligned}
& s_{n}=a+(a+r)+(a+2 r)+\cdots+(a+n r), \text { then } \\
& s_{n}=\frac{(n+1)(a+(a+n r))}{2} \\
& \lim _{n \rightarrow \infty} s_{n}=\infty, \text { if } r>0 \\
& \lim _{n \rightarrow \infty} s_{n}=-\infty, \text { if } r<0
\end{aligned}
$$

Proof:

$$
\begin{aligned}
s_{n} & =a+(a+r)+(a+2 r)+\cdots+(a+n r) \\
s_{n} & =(a+n r)+(a+(n-1) r)+\cdots+(a+r)+a \\
2 s_{n} & =(n+1)(a+(a+n r)) \rightarrow s_{n}=(n+1)(a+(a+n r)) / 2
\end{aligned}
$$

The z-Transform - Review of commonly used series (cont.)

- $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1$
- $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$
- $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
- $\frac{1}{2^{2}}+\frac{1}{4^{2}}+\frac{1}{6^{2}}+\cdots=\frac{\pi^{2}}{24}$

The z-Transform - Convergence of commonly used series

- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ for $p>0$:

Convergent, if $p>1$ Divergent, if $p \leq 1$.

Example:

- $1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$: divergent
- $1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}}+\cdots$: convergent

The z-Transform - Convergence of commonly used series (cont.)

- Ratio test: Suppose $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=r$.
* $r>1$: divergent
* $r<1$: convergent
* $r=1$: test gives no information
- Comparison test: Assume $0 \leq a_{n} \leq b_{n}, \quad \forall n$.

If $\sum b_{n}$ is convergent $\Rightarrow \sum a_{n}$ is convergent (For convenience, we use $\sum b_{n}$ to represent an infinite series in the notes)

Example: Let $a_{n}=\frac{2 n}{3 n^{3}-1}, \quad b_{n}=\frac{1}{n^{2}}$.
$\sum b_{n}$ is convergent. Thus, $\sum a_{n}$ is convergent because $n \geq 1 \rightarrow n^{3} \geq 1 \rightarrow 3 n^{3}-1 \geq 2 n^{3} \Rightarrow a_{n} \leq b_{n}$.

The z-Transform - Convergence of commonly used series (cont.)

- Corollary of comparison test (limiting form): Suppose that $a_{n}>0, b_{n}>0$ and then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=k>0$.

$$
\sum a_{n} \text { convergent } \stackrel{i f f}{\longleftrightarrow} \sum b_{n} \text { convergent }
$$

Example: Let $a_{n}=\frac{n}{n^{2}+1}, \quad b_{n}=\frac{1}{n}$.
$\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=1$.
Because $\sum b_{n}$ is divergent $\Rightarrow \sum a_{n}$ is divergent.

The z-Transform - Convergence of commonly used series (cont.)

- Necessary condition for convergence of $\sum a_{n}$:

$$
\lim _{n \rightarrow \infty}=a_{n}=0
$$

- It is not a sufficient condition. For example, $a_{n}=\frac{1}{n}, \sum a_{n}$ is divergent.

The z-Transform - Examples

Determine the z-transform of the following signals and depict the ROC and the locations of the poles and zeros of $X(z)$ in the z-plane:

- $x[n]=\alpha^{n} u[n]$ (causal signal) ॥
- $x[n]=-\alpha^{n} u[-n-1]$ (anticausal signal) ॥

For signal $x[n]=\alpha^{n} u[n]$:

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty} \alpha^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\frac{\alpha}{z}\right)^{n} .
\end{aligned}
$$

The z-Transform - Examples (cont.)

This infinite series converges to

$$
X(z)=\frac{1}{1-\alpha z^{-1}}=\frac{z}{z-\alpha}, \text { for }|z|>|\alpha|
$$

For signal $x[n]=-\alpha^{n} u[-n-1]$:

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{\infty}\left(-\alpha^{n} u[-n-1] z^{-n}\right) \\
& =-\sum_{n=-\infty}^{-1}\left(\frac{\alpha}{z}\right)^{n} \\
& =-\sum_{k=-1}^{-\infty}\left(\frac{\alpha}{z}\right)^{k}=1-\sum_{k=0}^{-\infty}\left(\frac{\alpha}{z}\right)^{k} \\
& =1-\frac{1}{1-z \alpha^{-1}}=\frac{z}{z-\alpha}, \text { for }|z|<|\alpha| .
\end{aligned}
$$

The z-Transform - Examples (cont.)

Observations:

- As bilateral Laplace transform, the relationship between $x[n]$ and $X(z)$ is not unique.
- The ROC differentiates the two transforms.
- We must know the ROC to determine the correct inverse z-transform.

The z-Transform - Examples (cont.)

- Read Example 7.4, p560.
- Problem 7.1(c), p_{561} : Determine the z-transform, the ROC, and the locations of poles and zeros of $X(z)$ for the following signal

$$
x[n]=-\left(\frac{3}{4}\right)^{n} u[-n-1]+\left(-\frac{1}{3}\right)^{n} u[n]
$$

Using the results given in the previous two slides:

$$
\begin{aligned}
-\left(\frac{3}{4}\right)^{n} u[-n-1] & \stackrel{z}{\longleftrightarrow} \frac{z}{z-3 / 4} \\
\left(-\frac{1}{3}\right)^{n} u[n] & \stackrel{z}{\longleftrightarrow} \frac{z}{z+1 / 3} .
\end{aligned}
$$

Thus, $X(z)=\frac{z}{z-3 / 4}+\frac{z}{z+1 / 3}=\frac{z(2 z-5 / 12)}{(z-3 / 4)(z+1 / 3)}$

Properties of the ROC

- As the Laplace transform, the ROC cannot contain any poles.ll
- ROC for a finite-duration signal includes the entire z-plane, except possibly $z=0$ or $z=\infty$ or both. ॥
- Left-sided sequence: $x[n]=0$ for $n \geq 0$ (notice the difference between the left-sided signal for Laplace transform).
- Right-sided sequence: $x[n]=0$ for $n<0 \|$
- Two-sided sequence: a signal that has infinite duration in both the positive and negative directions.

Properties of the ROC

- RSS: ROC is of the form $|z|>r_{+} \|$
- LSS: ROC is of the form $|z|<r_{-} \|$
- TSS: ROC if of the form $r_{+}<|z|<r_{-}$
where the boundaries r_{+}and r_{-}are determined by the pole locations. See the figure next page.

Properties of the ROC (cont.)

Properties of the ROC - Examples

Example 7.5, identify the ROC associated with the z-transform for each of the following signals.

- $x[n]=(-1 / 2)^{n} u[-n]+2(1 / 4)^{n} u[n]$
- $y[n]=(-1 / 2)^{n} u[n]+2(1 / 4)^{n} u[n]$
- $w[n]=(-1 / 2)^{n} u[-n]+2(1 / 4)^{n} u[-n]$

Properties of the ROC - Examples (cont.)

For $x[n]$, the z-transform is written as

$$
\begin{aligned}
X(z) & =\sum_{n=-\infty}^{0}\left(\frac{-1}{2 z}\right)^{n}+2 \sum_{n=0}^{\infty}\left(\frac{1}{4 z}\right)^{n} \\
& =\sum_{k=0}^{\infty}(-2 z)^{k}+2 \sum_{n=0}^{\infty}\left(\frac{1}{4 z}\right)^{n}
\end{aligned}
$$

- The first sum converges for $|z| l<\frac{1}{2}$. $\|$
- The second sum converges for $|z| i>\frac{1}{4}$.
- Thus, the ROC is $\frac{1}{4}<z<\frac{1}{2}$. Summing the two geometric series:

$$
X(z)=\frac{1}{1+z 2}+\frac{2 z}{z-1 / 4}
$$

Properties of the ROC - Examples (cont.)

Observations:

- The first term on the right side of $z[n]$ is a left-sided sequence. Its ROC is $|z|<r_{-}$, where r_{-}is determined by its pole location.
- The second term on the right side of $z[n]$ is a right-sided sequence. Its ROC is $\| z \mid>r_{+}$, where r_{+}is determined by its pole location.

Properties of the ROC - Examples (cont.)

For $y[n]$, both terms are right-sided sequences. Thus, the ROC is $|z|>r_{+}$, where r_{+}is determined by the pole locations.

$$
Y(z)=\sum_{n=0}^{\infty}\left(\frac{-1}{2 z}\right)^{n}+2 \sum_{n=0}^{\infty}\left(\frac{1}{4 z}\right)^{n}
$$

The first series converges for $|z|>1 / 2$ and the second series converges for $|z|>1 / 4$. Thus, the ROC is $|z|>1 / 2$, and we write $Y(z)$ as

$$
Y(z)=\frac{z}{z+1 / 2}+\frac{2 z}{z-1 / 4} .
$$

Properties of the ROC - Examples (cont.)

For $w[n]$, both terms are left-sided sequences. Thus, the ROC is $|z|<r_{-}$, where r_{-}is determined by the pole locations.

$$
\begin{aligned}
W(z) & =\sum_{n=-\infty}^{0}\left(\frac{-1}{2 z}\right)^{n}+2 \sum_{n=-\infty}^{0}\left(\frac{1}{4 z}\right)^{n} \\
& =\sum_{k=0}^{\infty}(-2 z)^{k}+2 \sum_{k=0}^{\infty}(4 z)^{k}
\end{aligned}
$$

Properties of the ROC - Examples (cont.)

- The first series converges for $|z|<1 / 2$.
- The second series converges for $|z|<1 / 4$.
- Thus, the ROC is $|z|<1 / 4$, and we write $W(z)$ as

$$
W(z)=\frac{1}{1+2 z}+\frac{2}{1-4 z}
$$

The pole locations of sequences $z[n], y[n], w[n]$ are shown in the figure next slide.

Properties of the ROC (cont.)

Properties of the z-transform

- Linearity

Let $x[n] \stackrel{z}{\longleftrightarrow} X(z)\left(\right.$ ROC $\left.R_{x}\right)$ and $y[n] \stackrel{z}{\longleftrightarrow} Y(z)$.
$a x[n]+b y[n] \stackrel{z}{\longleftrightarrow} a X(z)+b Y(z)$, with ROC at least $R_{x} \cap R_{y}$ * The ROC can be larger than the intersection if one or more terms in $x[n]$ or $y[n]$ cancel each other in the sum.

* In the z-plane, this corresponds to a zero canceling a pole that defines one of the ROC boundaries.

Properties of the z-transform (cont.)

Example: Example 7.5, p_{567}. Suppose
$x[n]=\left(\frac{1}{2}\right)^{n} u[n]-\left(\frac{3}{2}\right)^{n} u[-n-1] \stackrel{z}{\longleftrightarrow} X(z)=\frac{-z}{(z-1 / 2)(z-3 / 2)}$
with ROC $1 / 2<|z|<3 / 2$, and

$$
y[n]=\left(\frac{1}{4}\right)^{n} u[n]-\left(\frac{1}{2}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} Y(z)=\frac{-\frac{1}{4} z}{(z-1 / 4)(z-1 / 2)}
$$

with ROC $|z|>1 / 2$. Evaluate the z-transform of $a x[n]+b y[n]$, where a and b are constants.

Properties of the z-transform (cont.)

Using the linearity property, we have

$$
a x[n]+b y[n] \stackrel{z}{\longleftrightarrow} a \frac{-z}{(z-1 / 2)(z-3 / 2)}+b \frac{-\frac{1}{4} z}{(z-1 / 4)(z-1 / 2)}
$$

Must be careful in determining ROC. In general, the ROC is the intersection of individual ROCs. For some special cases, however, the ROC could be larger. For instance, let $a=b=1$.

Properties of the z-transform (cont.)

Then,

$$
\begin{aligned}
a X(z)+b Y(z) & =\frac{-z}{(z-1 / 2)(z-3 / 2)}+\frac{-\frac{1}{4} z}{(z-1 / 4)(z-1 / 2)} \\
& =\frac{-\frac{5}{4} z(z-1 / 2)}{(z-1 / 4)(z-1 / 2)(z-3 / 2)} \\
& =\frac{-\frac{5}{4} z}{(z-1 / 4)(z-3 / 2)}
\end{aligned}
$$

The ROC can be verified to be $1 / 4<|z|<3 / 2$ because the pole-zero cancellation ($z=1 / 2$), and the $(1 / 2)^{n} u[n]$ no longer presents.

Properties of the z-transform (cont.)

- Time reversal
* $x[-n] \stackrel{z}{\longleftrightarrow} X\left(\frac{1}{z}\right)$ with ROC $\frac{1}{R_{x}}$.
* If R_{x} is of the form $a<|z|<b$, the ROC of the reflected signal is $1 / b<|z|<1 / a$.
- Time shift
$x\left[n-n_{0}\right] \stackrel{z}{\longleftrightarrow} z^{-n_{0}} X(z)$ with ROC R_{x}, except possibly $z=0$ and $z=\infty$.
- If $n_{0}>0, z^{-n_{0}}$ introduces a pole $z=0$.
* If $n_{0}<0, z^{-n_{0}}$ introduces a pole $z= \pm \infty$.

Properties of the z-transform (cont.)

- Multiplication by an exponential sequence
* $\alpha^{n} x[n] \stackrel{z}{\longleftrightarrow} X\left(\frac{z}{\alpha}\right)$ with ROC $|\alpha| R_{x}$.
${ }^{*}|\alpha| R_{x}$ implies that the ROC boundaries are multiplied by $|\alpha|$.
* If $|\alpha|=1$, then the ROC is unchanged.
- Convolution
* $x[n] * y[n] \stackrel{z}{\longleftrightarrow} X(z) Y(z)$ with ROC at least $R_{x} \bigcap R_{y}$.

The ROC may be larger than the intersection of R_{x} and R_{y} if a pole-zero cancellation occurs in the product of $X(z) Y(z)$.

Properties of the z-transform (cont.)

- Differentiation in the z-domain
* $n x[n] \stackrel{z}{\longleftrightarrow}-z \frac{d}{d z} X(z)$, with ROC R_{x}.
- Read Example 7.8, p_{570}.

Example: Example 7.7, p_{570}. Find the z-transform of

$$
x[n]=\left(n\left(\frac{-1}{2}\right)^{n} u[n]\right) *\left(\frac{1}{4}\right)^{-n} u[-n] .
$$

Properties of the z-transform: example

- Basic signal of first term: $\left(\frac{-1}{2}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z+1 / 2}$, with ROC $|z|>1 / 2$.
- Applying the z-domain differentiation property:

$$
\begin{aligned}
n\left(\frac{-1}{2}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} & -z \frac{d}{d z} \frac{z}{z+1 / 2} \\
= & \frac{-\frac{1}{2} z}{(z+1 / 2)^{2}}, \text { with ROC }|z|>1 / 2
\end{aligned}
$$

Properties of the z-transform: example (cont.)

- Applying time reversal property: $\left(\frac{1}{4}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-1 / 4}$, with ROC $|z|>1 / 4$. Thus, $\left(\frac{1}{4}\right)^{-n} u[-n] \stackrel{1 / z}{\longleftrightarrow} \frac{1 / z}{1 / z-1 / 4}=\frac{-4}{z-4}$ with ROC $|z|<4$
- Applying convolution property: $x[n] \stackrel{z}{\longleftrightarrow} \frac{2 z}{(z-4)(z+1 / 2)^{2}}$, with ROC $\frac{1}{2}<|z|<4$.

