Inversion of the *z***-Transform**

- Focus on rational z-transform of z^{-1} .
- Apply partial fraction expansion.
- Like bilateral Laplace transforms, ROC must be used to determine a unique inverse *z*-transform.

Let

$$X(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 + a_1 z^{-1} + \dots + a_N z^{-N}}$$

and assume that M < N.

Inversion of the *z***-Transform (cont.)**

If $M \ge N$:

$$X(z) = \sum_{k=0}^{M-N} f_k z^{-k} + \frac{\tilde{B}(z)}{A(z)}$$

where $\tilde{B}(z)$ has order one less than the denominator polynomial.

 Partial fraction expansion is obtained by factoring the denominator polynomial into a product of first-order terms.

$$\begin{aligned} X(z) &= \frac{b_0 + b_1 z^{-1} + \dots + b_M z^{-M}}{a_0 \prod_{k=1}^N (1 - d_k z^{-1})} \\ &= \sum_{k=1}^N \frac{A_k}{1 - d_k z^{-1}}, \text{ if all poles } d_k \text{ are distinct} \end{aligned}$$

Inversion of the *z***-Transform (cont.)**

•
$$A_k(d_k)^n u[n] \xleftarrow{z}{\longrightarrow} \frac{A_k}{1-d_k z^{-1}}$$
, with ROC $|z| > d_k$.

•
$$-A_k(d_k)^n u(-n-1) \xleftarrow{z}{1-d_k z^{-1}}$$
, with ROC $|z| < d_k$.

If a pole d_i is repeated r times, then there are r terms in the partial-fraction expansion associated with that pole:

$$\frac{A_{i_1}}{1-d_i z^{-1}}, \ \frac{A_{i_2}}{(1-d_i z^{-1})^2}, \ \cdots, \ \frac{A_{i_r}}{(1-d_i z^{-1})^r}$$

Inversion of the *z***-Transform (cont.)**

•
$$A \frac{(n+1)\cdots(n+m-1)}{(m-1)!} (d_i)^n u[n] \xleftarrow{z} \frac{A}{(1-d_i z^{-1})^m}$$
, with ROC $|z| > d_i$.
• $-A \frac{(n+1)\cdots(n+m-1)}{(m-1)!} (d_i)^n u[-n-1] \xleftarrow{z} \frac{A}{(1-d_i z^{-1})^m}$, with ROC $|z| < d_i$.

 ROC of X(z) is the intersection of the ROCs associated with the individual terms in the partial-fraction expansion.

Example 7.9, p_{574} : find the inverse *z*-transform of

$$X(z) = \frac{1 - z^{-1} + z^{-2}}{(1 - \frac{1}{2}z^{-1})(1 - 2z^{-1})(1 - z^{-1})}$$

with ROC 1 < |z| < 2. Using partial fraction expansion:

$$X(z) = \frac{A_1}{1 - \frac{1}{2}z^{-1}} + \frac{A_2}{1 - 2z^{-1}} + \frac{A_3}{1 - z^{-1}}$$
$$= \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - 2z^{-1}} + \frac{-2}{1 - z^{-1}}$$

where A_1, A_2 , and A_3 are solved the same way as in Laplace transform:

$$A_1 = X(z)(1 - 1/2z^{-1})|_{z=1/2} = 1.$$

Applying the given ROC

- The first term (pole at z = 1/2) is a RSS. Thus, $\left(\frac{1}{2}\right)^n u[n] \xleftarrow{z} \frac{1}{1-\frac{1}{2}z^{-1}}$.
- The second term (pole at z = 2) is a LSS. Thus, $-2(2)^n u[-n-1] \xleftarrow{z}{1-2z^{-1}}$.
- The third term (pole at $\mathbf{z} = 1$) is a RSS. Thus, $-2(1)^n u[n] \xleftarrow{z}{1-z^{-1}}$.

Combining these terms gives

$$x[n] = \left(\frac{1}{2}\right)^n u[n] - 2(2)^n u[-n-1] - 2(1)^n u[n].$$

Example 7.10, p_{575} : Find the inverse *z*-transform of

$$X(z) = \frac{z^3 - 10z^2 - 4z + 4}{2z^2 - 2z - 4}, \quad \text{with ROC} \ |z| < 1$$

• X(z) given in terms of z, instead of z^{-1} .

• X(z) is not a proper function of z^{-1} .

Factoring z^3 from the numerator and $2z^2$ from the denominator gives

$$X(z) = \frac{1}{2}z\left(\frac{1-10z^{-1}-4z^{-2}+4z^{-3}}{1-z^{-1}-2z^{-2}}\right) = \frac{1}{2}zY(z)$$

- Factor $\frac{1}{2}z$ is easily incorporated using the time-shift property.
- The term in parentheses, Y(z), must be converted into two terms, a polynomial function of z⁻¹ and a proper function of z⁻¹, as

$$Y(z) = (-2z^{-1} + 3) + \frac{-5z^{-1} - 2}{(1 + z^{-1})(1 - 2z^{-1})}$$

= $(-2z^{-1} + 3) + \frac{1}{1 + z^{-1}} - \frac{3}{1 - 2z^{-1}}$, with ROC $|z| < 1$

Thus, we have

$$\begin{split} X(z) &= \frac{1}{2} z Y(z) \\ Y(z) &= (-2z^{-1} + 3) + \frac{1}{1 + z^{-1}} - \frac{3}{1 - 2z^{-1}} \\ & \text{(apply tables on } p_{784 - 785}) \\ y[n] &= \mathbf{I} - 2\delta[n - 1] + \mathbf{B}\delta[n]\mathbf{I} - (-1)^n u[-n - 1]\mathbf{I} + 3(2)^n u[-n - 1] \\ x[n] &= \frac{1}{2} y[n + 1] \\ &= \mathbf{I} - \delta[n] + \frac{3}{2}\delta[n + 1] - \frac{1}{2}(-1)^{n+1} u[-n - 2] + 3(2)^n u[-n - 2] \end{split}$$

The transfer function

- For LTI discrete-time systems with input x[n] and output y[n]:
 - ★ y[n] = x[n] * h[n]
 ★ Y(z) = X(z)H(z), where system transfer function H(z) is viewed as

$$H(z) = \frac{Y(z)}{X(z)}.$$

- In order to uniquely determine the impulse response from the transfer function, must know ROC.
- If ROC is not known, other system characteristics such as stability or casuality must be known.

The transfer function - Examples

Example 7.13, p_{580} : Find the transfer function and impulse of a causal LTI system if the input is

$$x[n] = (-1/3)^n u[n]$$

and the output is

$$y[n] = 3(-1)^n u[n] + (1/3)^n u[n].$$

$$\begin{split} X(z) &= \frac{1}{1 + (1/3)z^{-1}}, \quad \text{ROC} \quad |z| > 1/3 \\ Y(z) &= \frac{3}{1 + z^{-1}} + \frac{1}{1 - (1/3)z^{-1}} \\ &= \frac{4}{(1 + z^{-1})(1 - (1/3)z^{-1})}, \text{ROC} \quad |z| > 1 \end{split}$$

The transfer function - Examples (cont.)

ROC |z| > 1

Thus, the transfer function is obtained as

$$H(z) = \frac{4(1 + (1/3)z^{-1})}{(1 + z^{-1})(1 - (1/3)z^{-1})}, \quad \text{with}$$

Partial-fraction expansion:

$$H(z) = \frac{A}{1+z^{-1}} + \frac{B}{1-\frac{1}{3}z^{-1}}$$
$$= \frac{2}{1+z^{-1}} + \frac{2}{1-\frac{1}{3}z^{-1}}$$

Taking inverse *z*-transform we obtain the system impulse response

$$h[n] = 2(-1)^n u[n] + 2(1/3)^n u[n].$$

The transfer function - Examples (cont.)

Problem 7.8, p_{580} : An LTI system has impulse response $h[n] = (1/2)^n u[n]$. Determine the input to the system if the output if given by $y[n] = (1/2)^n u[n] + (-1/2)^n u[n]$.

• The *z*-transform of system output

$$Y(z) = \frac{1}{1 - (1/2)z^{-1}} + \frac{1}{1 + (1/2)z^{-1}}, \quad ROC \quad |z| > 1/2$$

System transfer function

$$H(z) = \frac{1}{1 - (1/2)z^{-1}}, \quad ROC \quad |z| > 1/2$$

The transfer function - Examples (cont.)

The *z*-transform of the system input is

$$\begin{aligned} X(z) &= Y(z)/H(z) \\ &= 1 + \frac{1 - (1/2)z^{-1}}{1 + (1/2)z^{-1}} \\ &= \frac{2}{1 + (1/2)z^{-1}} \xleftarrow{z} x[n] = 2(-1/2)^n u[n]. \end{aligned}$$

The transfer function and difference equation

• For a system described by the difference equation:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$
$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{M} b_k z^{-k}}{\sum_{k=0}^{N} a_k z^{-k}}$$

- The transfer function of an LTI system described by a difference equation is a ratio of polynomials in z^{-1} .
- This form of the transfer function is termed a *rational transfer function*.

The transfer function and difference equation - Examples

Example 7.14, p_{581} : Determine the transfer function and the impulse response for the causal LTI system described by the difference equation

$$y[n] - (1/4)y[n-1] - (3/8)y[n-2] = -x[n] + 2x[n-1]$$

Taking *z*-transform of both sides gives

The transfer function and difference equation - Examples (cont.)

Example 7.15, p_{581} : Find the difference-equation description of an LTI system with transfer function

$$H(z) = \frac{5z+2}{z^2+3z+2}.$$

Dividing both numerator and denominator by z^2 , we obtain

$$H(z) = \frac{Y(z)}{X(z)} = \frac{5z^{-1} + 2z^{-2}}{1 + 3z^{-1} + 2z^{-2}}.$$

Cross multiply and then inverse *z*-transform:

$$Y(z) + 3Y(z)z^{-1} + 2Y(z)z^{-2} = 5X(z)z^{-1} + 2X(z)z^{-2}$$
$$y[n] + 3y[n-1] + 2y[n-2] = 5x[n-1] + 2x[n-2]$$

System causality and stability

- Similar to continuous-time LTI systems, but there are differences.
- System transfer function $H(z) \stackrel{z}{\longleftrightarrow} h[n]$, system impulse response.
- In order to uniquely determine h[n], must know ROC or other knowledge of the system characteristics.
- Causal system $\rightarrow h[n] = 0$ for $n < 0 \rightarrow H(z)$ is right-sided transform.
- Stable system $\rightarrow h[n]$ absolutely summable \rightarrow DTFT of x[n]exists \rightarrow ROC includes unit circle ($z = e^{j\Omega}$).

System causality and stability (cont.)

- Assume a pole at $z = d_k$.
 - ★ If $|d_k| < 1$ (pole inside unit circle), the pole contributes an exponentially decaying term to the impulse response.
 - ★ If $|d_k| > 1$ (pole outside unit circle), the pole contributes an exponentially increasing term to the impulse response.
- Conclusion: If a system is causal and stable, then all poles of H(z) are inside the unit circle.

System causality and stability (cont.)

(a)

For causal systems

System causality and stability (cont.)

(a)

(b)

For stable systems

System causality and stability - Examples

- Read Example 7.16, p_{584}
- Read Example 7.17, p_{585}

Problem 7.10, p_{585} : A stable and causal LTI system is described by the difference equation

$$y[n] + \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = -2x[n] + \frac{5}{4}x[n-1].$$

Find the system impulse response.

System causality and stability - Examples (cont.)

Taking z-transform of both sides of the difference equation, we obtain

$$Y(z) + \frac{1}{4}Y(z)z^{-1} - \frac{1}{8}Y(z)Z^{-2} = -2X(z) + \frac{5}{4}X(z)z^{-1}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{-2 + \frac{5}{4}z^{-1}}{1 + \frac{1}{4}z^{-1} - \frac{1}{8}z^{-2}}$$

$$= \frac{-2 + \frac{5}{4}z^{-1}}{(1 - \frac{1}{4}z^{-1})(1 + \frac{1}{2}z^{-1})}$$

$$= \frac{A}{1 - \frac{1}{4}z^{-1}} + \frac{B}{1 + \frac{1}{2}z^{-1}}$$

System causality and stability - Examples (cont.)

Poles at z = 1/4 and z = -1/2, both are inside the unit circle. Because system is causal, both poles corresponding to right-sided terms.

$$A = \frac{-2 + \frac{5}{4}z^{-1}}{1 + \frac{1}{2}z^{-1}} \bigg|_{z^{-1}=4} = 1$$
$$B = \frac{-2 + \frac{5}{4}z^{-1}}{1 - \frac{1}{4}z^{-1}} \bigg|_{z^{-1}=-2} = -3$$
$$H(z) = \frac{1}{1 - \frac{1}{4}z^{-1}} + \frac{-3}{1 + \frac{1}{2}z^{-1}}$$
$$h[n] = \left(\frac{1}{4}\right)^{n} u[n] - 3\left(-\frac{1}{2}\right)^{n} u[n]$$

Freq. response from poles and zeros

- If ROC of an LTI system transfer function includes the unit circle, frequency response can be obtained as $H(e^{j\Omega}) = H(z)|_{z=e^{j\Omega}}$.
- For a rational transfer function assuming a p^{th} -order pole at z = 0 and an l^{th} -order zero at z = 0 expressed as

$$H(z) = \frac{\tilde{b}z^{-p} \prod_{k=1}^{M-p} (1 - c_k z^{-1})}{z^{-l} \prod_{k=1}^{N-l} (1 - d_k z^{-1})}$$

where $\tilde{b} = b_p/a_l$, the frequency response is obtained by substituting $z = e^{j\Omega}$:

$$H(e^{j\Omega}) = \frac{\tilde{b}e^{-jp\Omega}\prod_{k=1}^{M-p}(1-c_ke^{-j\Omega})}{e^{-jl\Omega}\prod_{k=1}^{N-l}(1-d_ke^{-j\Omega})}$$
$$= \frac{\tilde{b}e^{-j(N-M)\Omega}\prod_{k=1}^{M-p}(e^{j\Omega}-c_k)}{\prod_{k=1}^{N-l}(e^{j\Omega}-d_k)}$$

Freq. response from poles and zeros (cont.)

For a particular frequency Ω_0 , the overall magnitude is evaluated in terms of the magnitude associated with each pole and zero as

$$|H(e^{j\Omega_0})| = \frac{|\tilde{b}| \prod_{k=1}^{M-p} (e^{j\Omega_0} - c_k)}{\prod_{k=1}^{N-l} (e^{j\Omega_0} - d_k)}$$

and the overall phase is evaluated in terms of the phase associated with each pole and zero as

$$arg\{H(e^{j\Omega_0})\} = arg\{\tilde{b}\} + (N - M)\Omega_0 + \sum_{k=1}^{M-p} arg\{e^{j\Omega_0} - c_k\} - \sum_{k=1}^{N-l} arg\{e^{j\Omega_0} - d_k\}$$

Applications to Filters and Equalizers

- Distortionless transmission:
 - ⋆ A scaling of magnitude
 - ⋆ A constant time delay

Let x(t) be the input to an LTI system. If the system is distortionless, output must be $y(t) = Cx(t - t_0)$, where *C* is a constant and t_0 is the transmission delay.

★ The impulse response of the system is: $h(t) = \mathbb{C}\delta(t - t_0)$. ★ Fourier transform of y(t): $Y(j\omega) = \mathbb{C}X(j\omega)e^{-j\omega t_0}$.

Distortionless transmission

- The system transfer function: $H(j\omega) = \mathbb{C}e^{-j\omega t_0}$

Ideal low-pass filters

Consider

$$H(j\omega) = \begin{cases} e^{-j\omega t_0} & |\omega| \le \omega_c \\ 0 & |\omega| > \omega_c \end{cases}$$

where

- the constant is set to C = 1.
- a finite delay t_0 is chosen.
- ω_c is the cutoff frequency.

To evaluate the filter impulse response h(t), we take the inverse Fourier transform:

$$H(j\omega) \stackrel{FT}{\longleftrightarrow} h(t) = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega(t-t_0)} d\omega$$
$$= \frac{1}{2\pi} \frac{e^{j\omega(t-t_0)}}{j(t-t_0)} \Big|_{-\omega_c}^{-\omega_c}$$
$$= \frac{\sin(\omega_c(t-t_0))}{\pi(t-t_0)} = \frac{\omega_c}{\pi} \operatorname{sinc}\left(\frac{\omega_c}{\pi}(t-t_0)\right)$$

where the definition of $sinc(\omega t) = \frac{sin(\pi \omega t)}{\pi \omega t}$ is applied.

Frequency response of ideal low-pass filters. (a) Magnitude response. (b) Phase response.

Time-shifted form of the impulse response of an ideal, noncausal, low-pass filter for $\omega_c = 1$ and $t_0 = 8$.

Design of filters

Impulse responses of ideal filters are noncausal and infinite length. These filters are nonimplementable. Practical filters allow

- Passband ripple: $1 \epsilon \le |H(j\omega)| \le 1$ for $0 \le |\omega| \le \omega_p$, where ω_p is the passband cutoff frequency and ϵ is a tolerance parameter.
- Stop band ripple: $|H(j\omega)| \le \delta$ for $|\omega| \ge \omega_s$, where ω_s is the stopband cutoff frequency and δ is the tolerance parameter.
- Transition band: $\omega_s \omega_p$, a finite width.

Tolerance diagram of a practical low-pass filter. The passband, transition band, and stopband are shown for positive frequencies.

Approximating functions – Butterworth prototype

Butterworth function of order K:

$$|H(j\omega)|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^{2K}}, \ K = 1, 2, 3, \cdots,$$

- ω_c : cutoff frequency.
- *K*: filter order.
- For prescribed values of tolerance parameters ϵ and δ , the passband and stopband frequencies are:

$$\star \omega_p = \omega_c \left(\frac{\epsilon}{1-\epsilon}\right)^{1/(2K)}$$
$$\star \omega_s = \omega_c \left(\frac{1-\delta}{\delta}\right)^{1/(2K)}$$

Approximating functions – Butterworth prototype (cont.)

Magnitude response of Butterworth filter for varying orders.

Approximating functions – Butterworth prototype (cont.)

- Butterworth filters are *maximally flat* at $\omega = 0$ (i.e., the first 2K 1 derivatives of $|H(j\omega)|^2$ at $\omega = 0$ are equal to zero).
- For any given set of specifications $(\omega_p, \omega_s, \epsilon, \delta)$, K and ω_c can be calculated, and hence $|H(j\omega)|^2$ can be determined.

Given Butterworth function $|H(j\omega)|^2$, the transfer function H(s) maybe obtained by using the following procedures:

- Find the 2K pole locations of $H(s)H(-s)|_{s=j\omega} = |H(j\omega)|^2$: $s = \omega_c e^{j\pi(2k+1)/(2K)}$, for $k = 0, 1, \cdots, 2K - 1$.
- For a stable system, the K poles on the left half plane belong to H(s).

Approximating functions – Butterworth prototype (cont.)

- Read example 8.3, p_{627} .
- Problem 8.3, p_{628} : Find the transfer function of a Butterworth filter with cutoff frequency $\omega_c = 1$ and filter order K = 2.
 - ★ The 2K = 4 poles of H(s)H(-s) are determined to be $(s = \omega_c e^{j(2k+1)/(2K)}, k = 0, 1, 2, 3)$: $s_{1,2} = \frac{\sqrt{2}}{2} \pm j\frac{\sqrt{2}}{2}$, $s_{3,4} = -\frac{\sqrt{2}}{2} \pm j\frac{\sqrt{2}}{2}$. ★ Poles of H(s) are: $s_{3,4} = -\frac{\sqrt{2}}{2} \pm j\frac{\sqrt{2}}{2}$. Thus,

$$H(s) = \frac{1}{(s + \frac{\sqrt{2}}{2} + j\frac{\sqrt{2}}{2})(s + \frac{\sqrt{2}}{2} - j\frac{\sqrt{2}}{2})}$$
$$= \frac{1}{s^2 + \sqrt{2}s + 1}$$

Approximating functions – Chebyshev prototype

Magnitude response of Chebyshev filter for order (a) K = 3 and (b) K = 4 and passband ripple = 0.5 dB. The frequencies ω_b and ω_a in case (a) and the frequencies ω_{a1} and ω_b , and ω_{a2} in case (b) are defined in accordance with the optimality criteria for equiripple amplitude response.

Approximating functions – Chebyshev prototype (cont.)

- Equiripple in the passband.
- Monotonic in the stopband.
- Approximation functions with an equiripple magnitude response are known collectively as *Chebyshev functions*.
- A filter designed on this basis is called a *Chebyshev filter*.

Frequency transformations

- So far, have considered only low-pass filters.
- High-pass, band-pass, and band-stop filters can be designed by an appropriate transformation of the independent variable.
 - * Low-pass to high-pass transformation: $s \rightarrow \frac{\omega_c}{s}$, where ω_c is the desired cutoff frequency of the high-pass filter.
 - ★ Low-pass to band-pass transformation: $s \rightarrow \frac{s^2 + \omega_0^2}{Bs}$, where *B* is the bandwidth of the band-pass filter and ω_0 is the midband frequency of the band-pass filter, both measured in radians per second.