Inversion of the z-Transform

- Focus on rational z-transform of z^{-1}.
- Apply partial fraction expansion.
- Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Let

$$
X(z)=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}}
$$

and assume that $M<N$.

Inversion of the z-Transform (cont.)

If $M \geq N$:

$$
X(z)=\sum_{k=0}^{M-N} f_{k} z^{-k}+\frac{\tilde{B}(z)}{A(z)}
$$

where $\tilde{B}(z)$ has order one less than the denominator polynomial.

- Partial fraction expansion is obtained by factoring the denominator polynomial into a product of first-order terms.

$$
\begin{aligned}
X(z) & =\frac{b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}}{a_{0} \prod_{k=1}^{N}\left(1-d_{k} z^{-1}\right)} \\
& =\sum_{k=1}^{N} \frac{A_{k}}{1-d_{k} z^{-1}}, \text { if all poles } d_{k} \text { are distinct }
\end{aligned}
$$

Inversion of the z-Transform (cont.)

- $A_{k}\left(d_{k}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{A_{k}}{1-d_{k} z^{-1}}$, with ROC $|z|>d_{k}$.
$-A_{k}\left(d_{k}\right)^{n} u(-n-1) \stackrel{z}{\longleftrightarrow} \frac{A_{k}}{1-d_{k} z^{-1}}$, with ROC $|z|<d_{k}$.
If a pole d_{i} is repeated r times, then there are r terms in the partial-fraction expansion associated with that pole:

$$
\frac{A_{i_{1}}}{1-d_{i} z^{-1}}, \frac{A_{i_{2}}}{\left(1-d_{i} z^{-1}\right)^{2}}, \cdots, \frac{A_{i_{r}}}{\left(1-d_{i} z^{-1}\right)^{r}}
$$

Inversion of the z-Transform (cont.)

- $A \frac{(n+1) \cdots(n+m-1)}{(m-1)!}\left(d_{i}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{A}{\left(1-d_{i} z^{-1}\right)^{m}}$, with ROC $|z|>d_{i}$.
- $-A \frac{(n+1) \cdots(n+m-1)}{(m-1)!}\left(d_{i}\right)^{n} u[-n-1] \stackrel{z}{\longleftrightarrow} \frac{A}{\left(1-d_{i} z^{-1}\right)^{m}}$, with ROC $|z|<d_{i}$.
- ROC of $X(z)$ is the intersection of the ROCs associated with the individual terms in the partial-fraction expansion.

Inversion of the z-Transform: Examples

Example 7.9, p_{574} : find the inverse z-transform of

$$
X(z)=\frac{1-z^{-1}+z^{-2}}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-z^{-1}\right)}
$$

with ROC $1<|z|<2$.
Using partial fraction expansion:

$$
\begin{aligned}
X(z) & =\frac{A_{1}}{1-\frac{1}{2} z^{-1}}+\frac{A_{2}}{1-2 z^{-1}}+\frac{A_{3}}{1-z^{-1}} \\
& =\frac{1}{1-\frac{1}{2} z^{-1}}+\frac{2}{1-2 z^{-1}}+\frac{-2}{1-z^{-1}}
\end{aligned}
$$

where A_{1}, A_{2}, and A_{3} are solved the same way as in Laplace transform:

$$
A_{1}=\left.X(z)\left(1-1 / 2 z^{-1}\right)\right|_{z=1 / 2}=1 .
$$

Inversion of the z-Transform: Examples (cont.)

 $\operatorname{Im}\{z\}$

Inversion of the z-Transform: Examples (cont.)

Applying the given ROC

- The first term (pole at $\mathrm{k}=1 / 2$) is a RSS. Thus, $\left(\frac{1}{2}\right)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{1}{1-\frac{1}{2} z^{-1}}$. .
- The second term (pole at $k=2$) is a LSS. Thus, $-2(2)^{n} u[-n-1] \stackrel{z}{\longleftrightarrow} \frac{2}{1-2 z^{-1}}$.
- The third term (pole at $\mathbb{E}=1$) is a RSS. Thus, $-2(1)^{n} u[n] \stackrel{z}{\longleftrightarrow} \frac{-2}{1-z^{-1}}$.

Combining these terms gives

$$
x[n]=\left(\frac{1}{2}\right)^{n} u[n]-2(2)^{n} u[-n-1]-2(1)^{n} u[n] .
$$

Inversion of the z-Transform: Examples (cont.)

Example 7.10, p_{575} : Find the inverse z-transform of

$$
X(z)=\frac{z^{3}-10 z^{2}-4 z+4}{2 z^{2}-2 z-4}, \text { with ROC }|z|<1
$$

- $X(z)$ given in terms of z, instead of z^{-1}.
- $X(z)$ is not a proper function of z^{-1}.

Factoring z^{3} from the numerator and $2 z^{2}$ from the denominator gives

$$
X(z)=\frac{1}{2} z\left(\frac{1-10 z^{-1}-4 z^{-2}+4 z^{-3}}{1-z^{-1}-2 z^{-2}}\right)=\frac{1}{2} z Y(z)
$$

Inversion of the z-Transform: Examples (cont.)

- Factor $\frac{1}{2} z$ is easily incorporated using the time-shift property.
- The term in parentheses, $Y(z)$, must be converted into two terms, a polynomial function of z^{-1} and a proper function of z^{-1}, as

$$
\begin{aligned}
Y(z) & =\left(-2 z^{-1}+3\right)+\frac{-5 z^{-1}-2}{\left(1+z^{-1}\right)\left(1-2 z^{-1}\right)} \\
& =\left(-2 z^{-1}+3\right)+\frac{1}{1+z^{-1}}-\frac{3}{1-2 z^{-1}}, \quad \text { with ROC }|z|<1
\end{aligned}
$$

Inversion of the z-Transform: Examples (cont.)

Thus, we have

$$
\begin{aligned}
X(z)= & \frac{1}{2} z Y(z) \\
Y(z)= & \left(-2 z^{-1}+3\right)+\frac{1}{1+z^{-1}}-\frac{3}{1-2 z^{-1}} \\
& \left(\text { apply tables on } p_{784-785}\right)
\end{aligned}
$$

$$
\begin{aligned}
& y[n]=\|-2 \delta[n-1]+3 \delta[n]-(-1)^{n} u[-n-1] \Perp+3(2)^{n} u[-n-1] \\
& x[n]=\frac{1}{2} y[n+1]
\end{aligned}
$$

$$
=\|-\delta[n]+\frac{3}{2} \delta[n+1]-\frac{1}{2}(-1)^{n+1} u[-n-2]+3(2)^{n} u[-n-2] .
$$

The transfer function

- For LTI discrete-time systems with input $x[n]$ and output $y[n]$:
* $y[n]=x[n] * h[n]$
* $Y(z)=X(z) H(z)$, where system transfer function $H(z)$ is viewed as

$$
H(z)=\frac{Y(z)}{X(z)} .
$$

- In order to uniquely determine the impulse response from the transfer function, must know ROC.
- If ROC is not known, other system characteristics such as stability or casuality must be known.

The transfer function - Examples

Example 7.13, p_{580} : Find the transfer function and impulse of a causal LTI system if the input is

$$
x[n]=(-1 / 3)^{n} u[n]
$$

and the output is

$$
\begin{aligned}
& y[n]=3(-1)^{n} u[n]+(1 / 3)^{n} u[n] \\
X(z)= & \frac{1}{1+(1 / 3) z^{-1}}, \quad \mathrm{ROC}|z|>1 / 3 \\
Y(z)= & \frac{3}{1+z^{-1}}+\frac{1}{1-(1 / 3) z^{-1}} \\
= & \frac{4}{\left(1+z^{-1}\right)\left(1-(1 / 3) z^{-1}\right)}, \operatorname{ROC}|z|>1
\end{aligned}
$$

The transfer function - Examples (cont.)

Thus, the transfer function is obtained as

$$
H(z)=\frac{4\left(1+(1 / 3) z^{-1}\right)}{\left(1+z^{-1}\right)\left(1-(1 / 3) z^{-1}\right)}, \quad \text { with ROC } \| z \mid>1
$$

Partial-fraction expansion:

$$
\begin{aligned}
H(z) & =\frac{A}{1+z^{-1}}+\frac{B}{1-\frac{1}{3} z^{-1}} \\
& =\frac{2}{1+z^{-1}}+\frac{2}{1-\frac{1}{3} z^{-1}}
\end{aligned}
$$

Taking inverse z-transform we obtain the system impulse response

$$
h[n]=2(-1)^{n} u[n]+2(1 / 3)^{n} u[n] .
$$

The transfer function - Examples (cont.)

Problem 7.8, p_{580} : An LTI system has impulse response
$h[n]=(1 / 2)^{n} u[n]$. Determine the input to the system if the output if given by $y[n]=(1 / 2)^{n} u[n]+(-1 / 2)^{n} u[n]$.

- The z-transform of system output

$$
Y(z)=\frac{1}{1-(1 / 2) z^{-1}}+\frac{1}{1+(1 / 2) z^{-1}}, \quad R O C \quad|z|>1 / 2
$$

- System transfer function

$$
H(z)=\frac{1}{1-(1 / 2) z^{-1}}, \quad R O C \quad|z|>1 / 2
$$

The transfer function - Examples (cont.)

The z-transform of the system input is

$$
\begin{aligned}
X(z) & =Y(z) / H(z) \\
& =1+\frac{1-(1 / 2) z^{-1}}{1+(1 / 2) z^{-1}} \\
& =\frac{2}{1+(1 / 2) z^{-1}} \stackrel{z}{\longleftrightarrow} x[n]=2(-1 / 2)^{n} u[n]
\end{aligned}
$$

The transfer function and difference equation

- For a system described by the difference equation:

$$
\begin{aligned}
& \sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k] \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{k=0}^{M} b_{k} z^{-k}}{\sum_{k=0}^{N} a_{k} z^{-k}}
\end{aligned}
$$

- The transfer function of an LTI system described by a difference equation is a ratio of polynomials in z^{-1}.
- This form of the transfer function is termed a rational transfer function.

The transfer function and difference equation - Examples

Example 7.14, p_{581} : Determine the transfer function and the impulse response for the causal LTI system described by the difference equation

$$
y[n]-(1 / 4) y[n-1]-(3 / 8) y[n-2]=-x[n]+2 x[n-1]
$$

Taking z-transform of both sides gives

$$
\begin{aligned}
Y(z)-(1 / 4) z^{-1} Y(z)-(3 / 8) z^{-2} Y(z) & =-X(z)+2 z^{-1} X(z) \\
H(z) & =\frac{Y(z)}{X(z)}=\frac{-1+2 z^{-1}}{1-(1 / 4) z^{-1}-(3 / 8) z^{-2}} \\
= & \frac{-2}{1+(1 / 2) z^{-1}}+\frac{1}{1-(3 / 4) z^{-1}} \\
h[n]= & -2(-1 / 2)^{n} u[n]+(3 / 4)^{n} u[n] \\
& \text { (causal system) }
\end{aligned}
$$

The transfer function and difference equation - Examples (cont.)

Example 7.15, p_{581} : Find the difference-equation description of an LTI system with transfer function

$$
H(z)=\frac{5 z+2}{z^{2}+3 z+2} .
$$

Dividing both numerator and denominator by z^{2}, we obtain

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{5 z^{-1}+2 z^{-2}}{1+3 z^{-1}+2 z^{-2}}
$$

Cross multiply and then inverse z-transform:

$$
\begin{aligned}
Y(z)+3 Y(z) z^{-1}+2 Y(z) z^{-2} & =5 X(z) z^{-1}+2 X(z) z^{-2} \\
y[n]+3 y[n-1]+2 y[n-2] & =5 x[n-1]+2 x[n-2]
\end{aligned}
$$

System causality and stability

- Similar to continuous-time LTI systems, but there are differences.
- System transfer function $H(z) \stackrel{z}{\longleftrightarrow} h[n]$, system impulse response.
- In order to uniquely determine $h[n]$, must know ROC or other knowledge of the system characteristics.
- Causal system $\rightarrow h[n]=0$ for $n<0 \rightarrow H(z)$ is right-sided transform.
- Stable system $\rightarrow h[n]$ absolutely summable \rightarrow DTFT of $x[n]$ exists $\rightarrow \mathrm{ROC}$ includes unit circle ($z=e^{j \Omega}$).

System causality and stability (cont.)

- Assume a pole at $z=d_{k}$.
* If $\left|d_{k}\right|<1$ (pole inside unit circle), the pole contributes an exponentially decaying term to the impulse response.
* If $\left|d_{k}\right|>1$ (pole outside unit circle), the pole contributes an exponentially increasing term to the impulse response.
- Conclusion: If a system is causal and stable, then all poles of $H(z)$ are inside the unit circle.

Svstem causality and stability (cont.)

(a)

(b)

For causal systems

Svstem causality and stability (cont.)

(a)

(b)

For stable systems

System causality and stability - Examples

- Read Example 7.16, p584
- Read Example 7.17, p_{585}

Problem 7.10, p_{585} : A stable and causal LTI system is described by the difference equation

$$
y[n]+\frac{1}{4} y[n-1]-\frac{1}{8} y[n-2]=-2 x[n]+\frac{5}{4} x[n-1] .
$$

Find the system impulse response.

System causality and stability - Examples (cont.)

Taking z-transform of both sides of the difference equation, we obtain

$$
\begin{aligned}
Y(z)+\frac{1}{4} Y(z) z^{-1}-\frac{1}{8} Y(z) Z^{-2} & =-2 X(z)+\frac{5}{4} X(z) z^{-1} \\
H(z) & =\frac{Y(z)}{X(z)}=\frac{-2+\frac{5}{4} z^{-1}}{1+\frac{1}{4} z^{-1}-\frac{1}{8} z^{-2}} \\
& =\frac{-2+\frac{5}{4} z^{-1}}{\left(1-\frac{1}{4} z^{-1}\right)\left(1+\frac{1}{2} z^{-1}\right)} \\
& =\frac{A}{1-\frac{1}{4} z^{-1}}+\frac{B}{1+\frac{1}{2} z^{-1}}
\end{aligned}
$$

System causality and stability - Examples (cont.)

Poles at $z=1 / 4$ and $z=-1 / 2$, both are inside the unit circle. Because system is causal, both poles corresponding to right-sided terms.

$$
\begin{aligned}
A & =\left.\frac{-2+\frac{5}{4} z^{-1}}{1+\frac{1}{2} z^{-1}}\right|_{z^{-1}=4}=1 \\
B & =\left.\frac{-2+\frac{5}{4} z^{-1}}{1-\frac{1}{4} z^{-1}}\right|_{z^{-1}=-2}=-3 \\
H(z) & =\frac{1}{1-\frac{1}{4} z^{-1}}+\frac{-3}{1+\frac{1}{2} z^{-1}} \\
h[n] & =\left(\frac{1}{4}\right)^{n} u[n]-3\left(-\frac{1}{2}\right)^{n} u[n]
\end{aligned}
$$

Freq. response from poles and zeros

- If ROC of an LTI system transfer function includes the unit circle, frequency response can be obtained as $H\left(e^{j \Omega}\right)=\left.H(z)\right|_{z=e^{j \Omega}}$.
- For a rational transfer function assuming a $p^{t h}$-order pole at $z=0$ and an $l^{t h}$-order zero at $z=0$ expressed as

$$
H(z)=\frac{\tilde{b} z^{-p} \prod_{k=1}^{M-p}\left(1-c_{k} z^{-1}\right)}{z^{-l} \prod_{k=1}^{N-l}\left(1-d_{k} z^{-1}\right)}
$$

where $\tilde{b}=b_{p} / a_{l}$, the frequency response is obtained by substituting $z=e^{j \Omega}$:

$$
\begin{aligned}
H\left(e^{j \Omega}\right) & =\frac{\tilde{b} e^{-j p \Omega} \prod_{k=1}^{M-p}\left(1-c_{k} e^{-j \Omega}\right)}{e^{-j l \Omega} \prod_{k=1}^{N-l}\left(1-d_{k} e^{-j \Omega}\right)} \\
& =\frac{\tilde{b} e^{-j(N-M) \Omega} \prod_{k=1}^{M-p}\left(e^{j \Omega}-c_{k}\right)}{\prod_{k=1}^{N-l}\left(e^{j \Omega}-d_{k}\right)}
\end{aligned}
$$

Freq. response from poles and zeros (cont.)

For a particular frequency Ω_{0}, the overall magnitude is evaluated in terms of the magnitude associated with each pole and zero as

$$
\left|H\left(e^{j \Omega_{0}}\right)\right|=\frac{|\tilde{b}| \prod_{k=1}^{M-p}\left(e^{j \Omega_{0}}-c_{k}\right)}{\prod_{k=1}^{N-l}\left(e^{j \Omega_{0}}-d_{k}\right)}
$$

and the overall phase is evaluated in terms of the phase associated with each pole and zero as

$$
\begin{aligned}
\arg \left\{H\left(e^{j \Omega_{0}}\right)\right\}= & \arg \{\tilde{b}\}+(N-M) \Omega_{0}+ \\
& \sum_{k=1}^{M-p} \arg \left\{e^{j \Omega_{0}}-c_{k}\right\}-\sum_{k=1}^{N-l} \arg \left\{e^{j \Omega_{0}}-d_{k}\right\}
\end{aligned}
$$

Applications to Filters and Equalizers

- Distortionless transmission:
* A scaling of magnitude
* A constant time delay

Let $x(t)$ be the input to an LTI system. If the system is distortionless, output must be $y(t)=C x\left(t-t_{0}\right)$, where C is a constant and t_{0} is the transmission delay.
The impulse response of the system is: $h(t)=\boldsymbol{C} \delta\left(t-t_{0}\right)$.

* Fourier transform of $y(t): Y(j \omega)=\boldsymbol{C} X(j \omega) e^{-j \omega t_{0}}$.

Distortionless transmission

- The system transfer function: $H(j \omega)=\boldsymbol{C} e^{-j \omega t_{0}}$

Magnitude response: $|H(j \omega)|=\boldsymbol{C}$

* Phase response: $\arg \{H(j \omega)\}=\|-\omega t_{0}$

Ideal low-pass filters

Consider

$$
H(j \omega)= \begin{cases}e^{-j \omega t_{0}} & |\omega| \leq \omega_{c} \\ 0 & |\omega|>\omega_{c}\end{cases}
$$

where

- the constant is set to $C=1$.
- a finite delay t_{0} is chosen.
- ω_{c} is the cutoff frequency.

Ideal low-pass filters (cont.)

To evaluate the filter impulse response $h(t)$, we take the inverse Fourier transform:

$$
\begin{aligned}
H(j \omega) \stackrel{F T}{\longleftrightarrow} h(t) & =\frac{1}{2 \pi} \int_{-\omega_{c}}^{\omega_{c}} e^{j \omega\left(t-t_{0}\right)} d \omega \\
& =\left.\frac{1}{2 \pi} \frac{e^{j \omega\left(t-t_{0}\right)}}{j\left(t-t_{0}\right)}\right|_{-\omega_{c}} ^{-\omega_{c}} \\
& =\frac{\sin \left(\omega_{c}\left(t-t_{0}\right)\right)}{\left.\pi\left(t-t_{0}\right)\right)}=\frac{\omega_{c}}{\pi} \operatorname{sinc}\left(\frac{\omega_{c}}{\pi}\left(t-t_{0}\right)\right)
\end{aligned}
$$

where the definition of $\operatorname{sinc}(\omega t)=\frac{\sin (\pi \omega t)}{\pi \omega t}$ is applied.

Ideal low-pass filters (cont.)

Frequency response of ideal low-pass filters. (a) Magnitude response. (b) Phase response.

Ideal low-pass filters (cont.)

Time-shifted form of the impulse response of an ideal, noncausal, low-pass filter for $\omega_{c}=1$ and $t_{0}=8$.

Design of filters

Impulse responses of ideal filters are noncausal and infinite length. These filters are nonimplementable. Practical filters allow

- Passband ripple: $1-\epsilon \leq|H(j \omega)| \leq 1$ for $0 \leq|\omega| \leq \omega_{p}$, where ω_{p} is the passband cutoff frequency and ϵ is a tolerance parameter. II
- Stop band ripple: $|H(j \omega)| \leq \delta$ for $|\omega| \geq \omega_{s}$, where ω_{s} is the stopband cutoff frequency and δ is the tolerance parameter. II
- Transition band: $\omega_{s}-\omega_{p}$, a finite width.

Ideal low-pass filters (cont.)

Tolerance diagram of a practical low-pass filter. The passband, transition band, and stopband are shown for positive frequencies.

Approximating functions - Butterworth prototype

Butterworth function of order K :

$$
|H(j \omega)|^{2}=\frac{1}{1+\left(\frac{\omega}{\omega_{c}}\right)^{2 K}}, K=1,2,3, \cdots,
$$

- ω_{c} : cutoff frequency.
- K : filter order.
- For prescribed values of tolerance parameters ϵ and δ, the passband and stopband frequencies are:

$$
\begin{aligned}
\star \omega_{p} & =\omega_{c}\left(\frac{\epsilon}{1-\epsilon}\right)^{1 /(2 K)} \\
\star \omega_{s} & =\omega_{c}\left(\frac{1-\delta}{\delta}\right)^{1 /(2 K)}
\end{aligned}
$$

Approximating functions - Butterworth prototype (cont.)

Magnitude response of Butterworth filter for varying orders.

Approximating functions - Butterworth prototype (cont.)

- Butterworth filters are maximally flat at $\omega=0$ (i.e., the first $2 K-1$ derivatives of $|H(j \omega)|^{2}$ at $\omega=0$ are equal to zero).
- For any given set of specifications ($\omega_{p}, \omega_{s}, \epsilon, \delta$), K and ω_{c} can be calculated, and hence $|H(j \omega)|^{2}$ can be determined.

Given Butterworth function $|H(j \omega)|^{2}$, the transfer function $H(s)$ maybe obtained by using the following procedures:

- Find the $2 K$ pole locations of $\left.H(s) H(-s)\right|_{s=j \omega}=|H(j \omega)|^{2}$: $s=\omega_{c} e^{j \pi(2 k+1) /(2 K)}$, for $k=0,1, \cdots, 2 K-1$.
- For a stable system, the K poles on the left half plane belong to $H(s)$.

Approximating functions - Butterworth prototype (cont.)

- Read example 8.3, p_{627}.
- Problem 8.3, p_{628} : Find the transfer function of a Butterworth filter with cutoff frequency $\omega_{c}=1$ and filter order $K=2$.
The $2 K=4$ poles of $H(s) H(-s)$ are determined to be $\left(s=\omega_{c} e^{j(2 k+1) /(2 K)}, k=0,1,2,3\right): s_{1,2}=\frac{\sqrt{2}}{2} \pm j \frac{\sqrt{2}}{2}$, $s_{3,4}=-\frac{\sqrt{2}}{2} \pm j \frac{\sqrt{2}}{2}$.
Poles of $H(s)$ are: $\mathfrak{s}_{3,4}=-\frac{\sqrt{2}}{2} \pm j \frac{\sqrt{2}}{2}$. Thus,

$$
\begin{aligned}
H(s) & =\frac{1}{\left(s+\frac{\sqrt{2}}{2}+j \frac{\sqrt{2}}{2}\right)\left(s+\frac{\sqrt{2}}{2}-j \frac{\sqrt{2}}{2}\right)} \\
& =\frac{1}{s^{2}+\sqrt{2} s+1}
\end{aligned}
$$

Approximating functions - Chebyshev prototype

(a)

(b)

Magnitude response of Chebyshev filter for order (a) $K=3$ and (b) $K=4$ and passband ripple $=0.5 \mathrm{~dB}$. The frequencies ω_{b} and ω_{a} in case (a) and the frequencies $\omega_{a 1}$ and ω_{b}, and $\omega_{a 2}$ in case (b) are defined in accordance with the optimality criteria for equiripple amplitude response.

Approximating functions - Chebyshev prototype (cont.)

- Equiripple in the passband.
- Monotonic in the stopband.
- Approximation functions with an equiripple magnitude response are known collectively as Chebyshev functions.
- A filter designed on this basis is called a Chebyshev filter.

Frequency transformations

- So far, have considered only low-pass filters.
- High-pass, band-pass, and band-stop filters can be designed by an appropriate transformation of the independent variable.
* Low-pass to high-pass transformation: $s \rightarrow \frac{\omega_{c}}{s}$, where ω_{c} is the desired cutoff frequency of the high-pass filter. Low-pass to band-pass transformation: $s \rightarrow \frac{s^{2}+\omega_{0}^{2}}{B s}$, where B is the bandwidth of the band-pass filter and ω_{0} is the midband frequency of the band-pass filter, both measured in radians per second.

