Inversion of the z-Transform

e Focus on rational z-transform of z— 1.

e Apply partial fraction expansion.

e Like bilateral Laplace transforms, ROC must be used to
determine a unique inverse z-transform.

Let
B(z) bo+bizt 4+ -+ by

A(z) ag+arz 4+ +ayz N
and assume that M < N.

X(z) =




Inversion of the z-Transform (cont.)

If M > N:
X(Z) — i sz_k + igzi
k=0

where B(z) has order one less than the denominator polynomial.

e Partial fraction expansion is obtained by factoring the denominator
polynomial into a product of first-order terms.

bo+ bzt + -+ by M

X(z) =
R TN
AN | -
— Z , if all poles d}, are distinct
1 — dkz_l

k=1



Inversion of the z-Transform (cont.)

o A(dp)"uln] < 1_2;_1, with ROC |z| > dy.

o —Au(dp)"u(—n—1) < 1_;4;2—1’ with ROC |z| < dp.

If a pole d; Is repeated r times, then there are r terms in the
partial-fraction expansion associated with that pole:
A, A, A;
1 —diz7V (1 —d;z=1)? " (1 —diz7h)r




Inversion of the z-Transform (cont.)

o AL nEn= ) (d;) uln] «~ G=7A=r, With ROC |z| > d;
o —Alt b=l (d;) u[—n — 1] <> G=A-s, with ROC
‘Z| < d;.

e ROC of X (z) is the intersection of the ROCs associated with
the individual terms in the partial-fraction expansion.



Inversion of the z-Transform: Examples

Example 7.9, ps74: find the inverse z-transform of

1] —z= 14 72
(1—2z"H(1—22"1)(1—2"1)

X(z) =

with ROC 1 < |z| < 2.
Using partial fraction expansion:

Aq As As
X —
(2) 1—%2—1+1—2z_1+1—z—1
1 2 —2
= — +

1 — 52_1 1 — 22_1 1 — Z_l

where A1,A,, and A3 are solved the same way as in Laplace transform:

Al =X(2)(1—-1/22""|,210=1.



Inversion of the z-Transform: Examples (cont.)
Im{z}




Inversion of the z-Transform: Examples (cont.)

Applying the given ROC

e The first term (pole atk = 1/2) is aRSS. Thus, (3)" un] «— ——.

e The second term (pole at & = 2) is a LSS. Thus,

—2(2)"u[—n — 1] —— —=.

e The third term (pole at & = 1) is a RSS. Thus, —2(1)"u[n] «— —2

1—z—1"

Combining these terms gives



Inversion of the z-Transform: Examples (cont.)

Example 7.10, p575: Find the inverse z-transform of

_23—1Oz2—4z—l—4

with ROC 1
222 — 2z — 4 2] <

X(z)

,

e X(z) given in terms of z, instead of 2~ 1.
e X(z) is not a proper function of >~ 1.

Factoring 2> from the numerator and 2z from the denominator
gives

1 (1—-10z71 4272 +4277 1
X(z)==z2 ( T o ) = §zY(z)



Inversion of the z-Transform: Examples (cont.)

e Factor %z IS easily incorporated using the time-shift property.

e The term in parentheses, Y (z), must be converted into two
terms, a polynomial function of z—! and a proper function of
—1
z7 ", as

—5z71 -2
Y(z) = (—227"
) = 2
1 .
_ (—2a3) 4 % WithROC |z| <1

14+2z71 1—9z1



Inversion of the z-Transform: Examples (cont.)

Thus, we have

X(z) = %zY(z)

1 3
Y(z) = (227143 —

(2) = ) o - T
(apply tables on prg4_7s5)

yln] = 1—20n — 1] +80[nji— (—=1)"ul—n — 1|14+ 3(2)"u[—n — 1]

o 1
x[n] = §y[n + 1]
1

_ oln] + ga[n 1] (=)™ uln — 2] 4 3(2)"ul-n — 2]



The transfer function

e For LTI discrete-time systems with input z[n| and output y[n|:

y[n] = x[n] * h[n]
Y(z) = X(2)H(z), where system transfer function H(z) is
viewed as

e In order to uniquely determine the impulse response from the
transfer function, must know ROC.

e If ROC is not known, other system characteristics such as
stability or casuality must be known.



The transfer function - Examples

Example 7.13, pss0: Find the transfer function and impulse of a causal LTI
system if the input is
zn] = (—=1/3)"uln]
and the output is
yln] = 3(=1)"uln] + (1/3)"u[n].

1

X(z) = R 1
©) = g ROC |1/
3 1
Y —
(2) T+2 1 1-(1/3)21
4
= ROC |z]| > 1

(142711 = (1/3)z71)



The transfer function - Examples (cont.)
Thus, the transfer function is obtained as

41+ (1/3)z71)

1O =T -y

with ROC |z| > 1

Partial-fraction expansion:

A B
H _
(2) 1+ 271 " 1— 2271
2 2
14zt 14t

Taking inverse z-transform we obtain the system impulse
response
hin| = 2(—1)"uln| + 2(1/3)"u|n|.



The transfer function - Examples (cont.)

Problem 7.8, pss0: An LTI system has impulse response
h{n] = (1/2)™u|n]. Determine the input to the system if the output

if given by y[n| = (1/2)"u[n] + (—=1/2)"un].

e The z-transform of system output

1 1
Y = 1/2
() =1 /21 " 1xa2)er 10¢ 2> 1/
e System transfer function
1
H(z) ROC |z| > 1/2

T 11— (1/2)z L



The transfer function - Examples (cont.)

The z-transform of the system input is

X(z) = Y(2)/H(z)

1—(1/2)z7 1

1+ (1/2)z—1
2 z

= Tyt ol =2 1/2) ulnl

— 1+




The transfer function and difference equation

e For a system described by the difference equation:

Z aryln — k| = Z brx|n — k]
k=0 k=0

Y (z2) ZMzob 2"
TO=X0 = Shome

e The transfer function of an LTI system described by a
difference equation is a ratio of polynomials in 2.

e This form of the transfer function is termed a rational transfer
function.



The transfer function and difference equation - Examples

Example 7.14, pss1: Determine the transfer function and the impulse response
for the causal LTI system described by the difference equation

yln] — (1/4)yln — 1] = (3/8)yn — 2| = —x[n] + 2z[n — 1]

Taking z-transform of both sides gives

Y(z)— (1/4)27 'Y (2) — (3/8)272Y (2)

—X(2) +2271X(2)

Y(2) —1+2271

X(z) 1—(1/4)z=1—(3/8)z72
—2 1

1+ (1/2)>1  1=(3/4):1

—2(=1/2)"u[n] + (3/4)"uln]

(causal system)




The transfer function and difference equation - Examples
(cont.)

Example 7.15, pss1: Find the difference-equation description of an LTI system

with transfer function
Sz + 2

T 243,42
Dividing both numerator and denominator by 22, we obtain

H(z)

Y(z) bz l42z77
X(z) 1432714222

H(z) =

Cross multiply and then inverse z-transform:

Y(2) +3Y(2)z2 1 +2Y(2)z7? = 5X(2)z '+ 2X(2)z 7
y[n] +3yln — 1]+ 2y[n —2] = bzx[n — 1]+ 2x[n — 2]



System causality and stability

e Similar to continuous-time LTI systems, but there are
differences.

e System transfer function H(z) «~— h[n], system impulse
response.

e In order to uniquely determine h|n|, must know ROC or other
knowledge of the system characteristics.

e Causal system — h|n| =0forn < 0 — H(z) is right-sided
transform.

e Stable system — h|n] absolutely summable — DTFT of x|n]
exists — ROC includes unit circle (z = e7?).



System causality and stability (cont.)

e Assume a pole at z = d;.

If |dx| < 1 (pole inside unit circle), the pole contributes an
exponentially decaying term to the impulse response.

If |di| > 1 (pole outside unit circle), the pole contributes an
exponentially increasing term to the impulse response.

e Conclusion: If a system is causal and stable, then all poles of
H (z) are inside the unit circle.



System causality and stability (cont.)

Im{z} h[n]

RE{Z}:> o0 Té?g,?aom'!
ﬂlz 4

Exponentially decreasing term

z-plane

h[n]
Im|z}

— Relzt = ?TITH” :

0 4 6

lz] =1

g Exponentially mncreasing term

(b)
For causal systems



System causality and stability (cont.)

Im{z} h[n]

lz| =1
Right-sided term

z-plane

(a)
h[n]
Imfz]

T 1

=6 =4 =3 o
|z | =1
z-plane Left-sided term

(b)

For stable systems



System causality and stability - Examples

e Read Example 7.16, psg4

e Read Example 7.17, psss
Problem 7.10, pss5: A stable and causal LTI system is described
by the difference equation

yn] + iy[n — 1] — %y[n — 2] = —2z[n] + Za:[n —1].

Find the system impulse response.



System causality and stability - Examples (cont.)

Taking z-transform of both sides of the difference equation, we

obtain

—2X(@-+§X(@z—1

Y(z)  —2+432z7!

X (2) 14 }lz_l %2—2

(1-g2" )ﬂ+1‘5
A B

_|_
1—2z71 142zt



System causality and stability - Examples (cont.)

Poles at z = 1/4 and z = —1/2, both are inside the unit circle. Because
system is causal, both poles corresponding to right-sided terms.

—2 4+ %z‘l
A = T 3 =1
1+ 352 1y
—2 + gz_l
B = I = -3
4 s—1—_9
1 —3
H(z) = 1 + 1




Freq. response from poles and zeros

e If ROC of an LTI system transfer function includes the unit circle, frequency
response can be obtained as H(e’*}) = H(2)|.__jo.

e For a rational transfer function assuming a p'*-order pole at z = 0 and an
[*h-order zero at z = 0 expressed as

bz P HM—p( cpz L)
_l H (1 — de 1)

H(z) =

where b = b,/a;, the frequency response is obtained by substituting
z = el

0 B e _
H(ej ) T . N —1
be J(N—=M)Q2 HM p(ejQ . Ck:)

o (72 — dy,)




Freqg. response from poles and zeros (cont.)

For a particular frequency (), the overall magnitude is evaluated
In terms of the magnitude associated with each pole and zero as

[Tz (€790 — di)

and the overall phase is evaluated in terms of the phase
associated with each pole and zero as

arg{H(e’*)} = arg{b} + (N — M)Q +

M—p N —I
Z arg{e’* — cx} — Z arg{e’* — dy.}
k=1 k=1



Applications to Filters and Equalizers

Distortionless transmission:

A scaling of magnitude
A constant time delay

Let z(t) be the input to an LTI system. If the system is
distortionless, output must be y(t) = Cxz(t — ty), where C'is a
constant and ¢ Is the transmission delay.

The impulse response of the system is: h(t) = C(t — to).
Fourier transform of y(t): Y (jw) = CX (jw)e I+,



Distortionless transmission

o The system transfer function: H(jw) = Ce 7%t

Magnitude response: |H(jw)| =

Phase response: arg{ H(jw)} = 1— wto
|H(jv)l arg{ H(jv))
C
Vv Vv
0 0

Shlpﬁ = —1 |

(a) (b)



|deal low-pass filters

Consider |
e Iwh | < w,

HGw) =1 §

w| > we
where

e the constantis setto C' = 1.
e a finite delay ¢, Is chosen.

e w, IS the cutoff frequency.



Ideal low-pass filters (cont.)

To evaluate the filter impulse response h(t), we take the inverse
Fourier transform:

FT 1 [%e

H(jw) «— h(t) = — el@(t=10) dyy
2 J_
1| edw(t—to)|
27 j(t — to)
. C t - t c . C
_ sin(we( 0)) _ Y i (w_(t _ to))
m(t — tg)) 7 T
where the definition of sinc(wt) = Sm(“’t) is applied.



Ideal low-pass filters (cont.)

|H(jv)| arg[ H(jv))

Slope = -1

(a) (b)
Frequency response of ideal low-pass filters. (a) Magnitude
response. (b) Phase response.



Ideal low-pass filters (cont.)

0.35
0.3 {\
0.25

0.2

0.15 duration of
h(t) main lobe

0.1 /
0.05

< %
< >

0
—-0.05

1
-25 20 -15 -10 -5 O 5 10 15 20 25
Time ¢ to=238

Time-shifted form of the impulse response of an ideal,
noncausal, low-pass filter for w. = 1 and ¢y = 8.



Design of filters

Impulse responses of ideal filters are noncausal and infinite
length. These filters are nonimplementable. Practical filters allow

e Passband ripple: 1 — e < |H(jw)| < 1for 0 < |w| < w,, Where
w, IS the passband cutoff frequency and ¢ Is a tolerance
parameter.

e Stop band ripple: |H(jw)| < ¢ for |w| > ws, Where w, is the
stopband cutoff frequency and ¢ Is the tolerance parameter.

e Transition band: w,; — w,, a finite width.



Ideal low-pass filters (cont.)
|H(jv)l

|
l-e

d

\'

0 vV,
|<—Passband—>| T |<— Stopband —>

Transition
band

Tolerance diagram of a practical low-pass filter. The passband,
transition band, and stopband are shown for positive frequencies.



Approximating functions — Butterworth prototype

Butterworth function of order K:

H (jw)|? =

e w.. cutoff frequency.

e K filter order.

e For prescribed values of tolerance parameters ¢ and ¢, the
passband and stopband frequencies are:

1/(2K)




Approximating functions — Butterworth prototype (cont.)

Squared magnitude response

I

3 4 5 6 7 8 9 10
Normalized frequency v/v,

Magnitude response of Butterworth filter for varying orders.



Approximating functions — Butterworth prototype (cont.)

e Butterworth filters are maximally flat at w = 0 (i.e., the first
2K — 1 derivatives of |H(jw)|? at w = 0 are equal to zero).

e For any given set of specifications (w,,ws, €,9), K and w, can
be calculated, and hence |H (jw)|? can be determined.

Given Butterworth function | H (jw)|?, the transfer function H (s)
maybe obtained by using the following procedures:

e Find the 2K pole locations of H(s)H(—s)|s=j = |H (jw)|*:
s = wed™CktD/2K) - for kb =0,1,--- ,2K — 1.

e For a stable system, the K poles on the left half plane belong
to H(s).



Approximating functions — Butterworth prototype (cont.)

e Read example 8.3, pgor.

e Problem 8.3, pgos: Find the transfer function of a Butterworth
filter with cutoff frequency w. = 1 and filter order K = 2.

The 2K = 4 poles of H(s)H(—s) are determined to be
(S — wcej<2k+1)/(2K)7 k = 07 17 27 3) S1,2 = \/Ti + .]\/75;
8374 — —\/75 + ]\/75

Poles of H(s) are: 3 4 = _ V2 ij\/g. Thus,

H(s) =




Approximating functions — Chebyshev prototype

Magnitude response
Magnitude response
in

2 3 4

I
ormalized frequency V/v, Normalized frequency v/v,,

(a) (b)
Magnitude response of Chebyshev filter for order (a) K = 3 and (b) K = 4 and
passband ripple = 0.5 dB. The frequencies w;, and w, in case (a) and the
frequencies w,1 and wy, and w,s In case (b) are defined in accordance with the
optimality criteria for equiripple amplitude response.



Approximating functions — Chebyshev prototype (cont.)
e Equiripple in the passband.
e Monotonic in the stopband.

e Approximation functions with an equiripple magnitude
response are known collectively as Chebyshev functions.

e A filter designed on this basis is called a Chebyshev filter.



Frequency transformations

e SO far, have considered only low-pass filters.

e High-pass, band-pass, and band-stop filters can be designed
by an appropriate transformation of the independent variable.

Low-pass to high-pass transformation: s — =<, where w.. Is

the desired cutoff frequency of the high-passsfilter.

Low-pass to band-pass transformation: s — 82;"8, where B
IS the bandwidth of the band-pass filter and wy Is the
midband frequency of the band-pass filter, both measured in

radians per second.




