
Thread Programming
(Linux)

Thread Programming
• http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixT

hreads.html#BASICS

Example
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function(void *ptr);
main()

{
pthread_t thread1, thread2;
char *message1 = "Thread 1";
char *message2 = "Thread 2";
int iret1, iret2;

/* Create independent threads each of which will execute function */
iret1 = pthread_create(&thread1, NULL, print_message_function, (void*) message1);
iret2 = pthread_create(&thread2, NULL, print_message_function, (void*) message2);

/* Wait till threads are complete before main continues. Unless we */
/* wait we run the risk of executing an exit which will terminate */
/* the process and all threads before the threads have completed. */

pthread_join(thread1, NULL); pthread_join(thread2, NULL);
printf("Thread 1 returns: %d\n",iret1);
printf("Thread 2 returns: %d\n",iret2);
exit(0); }

void *print_message_function(void *ptr) {
char *message; message = (char *) ptr;
printf("%s \n", message);
}

Compile

Compile:
C compiler: cc -lpthread pthread1.c

or
C++ compiler: g++ -lpthread pthread1.c

Run: ./a.out
Results:

Thread 1 Thread 2 Thread 1 returns: 0 Thread 2 returns: 0
Details:

Thread Synchronization

Mutexes - Mutual exclusion lock: Block access to variables by other
threads. This enforces exclusive access by a thread to a variable or set
of variables.

Mutexes

Homework 4

Implement Token Bucket Algorithm at Relay Node

Thread 1: Filling the bucket by
increasing the counter value at
every interval of time. Stop when
the counter value reaches b.

Thread 2 (main thread): For every
arrival packet, remove a token
from a bucket and sends the
packet out. If the bucket is empty,
discards the arrival packet.

Use mutex to modify the
value of the counter!

To control the sending rate or the token
filling rate

