Thread Programming
(Linux)

Thread Programming

o http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixT
hreads.html#BASICS

Example

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *print_message_function(void *ptr);
main()

{

pthread_t threadl, thread2;

char *messagel = "Thread 1";

char *message2 = "Thread 2"

int iretl, iret2;

[* Create independent threads each of which will execute function */
iretl = pthread create(&threadl, NULL, print_message_function, (void*) messagel);
iret2 = pthread_create(&thread2, NULL, print_message_function, (void*) message2);

[* Wait till threads are complete before main continues. Unless we */
[* wait we run the risk of executing an exit which will terminate */
/[* the process and all threads before the threads have completed. */

pthread join(threadl, NULL); pthread_join(thread2, NULL);
printf("Thread 1 returns: %d\n",iretl);

printf("Thread 2 returns: %d\n",iret2);

exit(0); }

void *print_message_function(void *ptr) {
char *message; message = (char *) ptr;
printf("%s \n", message);

}

Compile

Compile:
C compiler: cc -Ipthread pthreadl.c
or
C++ compiler: g++ -Ipthread pthreadl.c

Run: ./a.out
Results:
Thread 1 Thread 2 Thread 1 returns: O Thread 2 returns: 0O
Details:

Thread Synchronization

Mutexes - Mutual exclusion lock: Block access to variables by other
threads. This enforces exclusive access by a thread to a variable or set
of variables.

Mutexes

Without Mutex

With Mutex

int counter=Q0:;

A% Function C */
wold functionc ()

{

counter++

¥

£% Note acope of wvariable and mutex are the same /7
pthread wutex t mwutexl = PTHREAD MUTEX INITIALIZER;

int counter=Q0:;

A% Function C */
wold functionc ()

{
pthread mutex lock(&mutexl |

counter++
pthread wutex unlock(&mutexl |;

¥

Fossible execution sequence

Thread 1 | Thread 2 | Thread 1 Thread 2
counter = O |counter = 0 \counter = 0 |counter = 0

_ _ _ . [Thread 2 locked out.
counter = 1 |counter = 1 |counter = 1

Thread 1 has exclusive use of variable counter

counter = 2

Sender

Homework 4

Eelay node running

regulate the flows

Token bucket algorithm to

Eecetver

Implement Token Bucket Algorithm at Relay Node

Thread 1: Filling the bucket by
increasing the counter value at
every interval of time. Stop when
the counter value reaches b.

r tokens/se«:{

bucket holds up to
b tokens

packetsl token| ./ Aremove to
wait token >

network

Use mutex to modify the
Thread 2 (main thread): For every value of the counter!
arrival packet, remove a token
from a bucket and sends the
packet out. If the bucket is empty,
discards the arrival packet.

To control the sending rate or the token
filling rate

#finclude <unistd.h>
unsigned int usecs;

Uusleepiusecs) ;

