Lecture 6:
Huffman Code

Thinh Nguyen
Oregon State University

Review

O Coding: Assigning binary codewords to
(blocks of) source symbols.

o Variable-length codes (VLC)

O Tree codes (prefix code) are instantaneous.

Example ot VL.C

« Example: a 0,b 100,c 101, d 11
* Coding:

— aabddcaa = 16 bits

— 0010011111010 0= 14 bits

* Prefix code ensures unique decodability.
— 00100111110100

NN

—aabddcaa

Creating a Code: The Data Compression
Problem

O Assume a source with an alphabet A and known
symbol probabilities {p;}.

O Goal: Chose the codeword lengths as to minimize
the bitrate, i.e., the average number of bits per
symbol > [, * p;.

O Trivial solution: [; =0 *1.

O Restriction: We want an decodable code, so
y 2l <=1 (Kraft inequality) must be valid.

O Solution (at least in theory): | = - log p;

In practice...

0 Use some nice algorithm to find the codes

= Huffman coding
= Tunnstall coding
= Golomb coding

Huttman Average Code Length

o Input: Probabilities p,, p,, --- , P, fOor symbols a,, a,, ... ,a.,,
respectively.

O Output: A tree that minimizes the average number of bits
(bit rate) to code a symbol. That is, minimizes

Where |, is the length of codeword a,

Huftman Coding

O

1.

2.

Two-step algorithm:
Iterate:

-~ Merge the least probable symbols.

- Sort.
Assign bits.

0 0

a 0.5 0.5
10 1

b 0.25—T 0.5
11

C — 0.25 —

Merge

Sort

Assign

Get code

More Examples of Huftman Code

+ P(a) =4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

4 1 3 1 1
a b C d e

More Examples of Hutfman Code

More Examples of Huftman Code

More Examples of Huftman Code

Average Huffman Code Length

average number of bits per symbol is
Ax1+ 1x4+ 3x2+1x3+1x4=21

1110
10

110
1111

Lo O oTo

Optimality of A Prefix Code

O Necessary conditions for an optimal variable-length binary
code:

1. Given any two letters g; and a,, If P(g;) >= P(a,) , then |; <=1,
where |; is the length 014 the codewor a;.

2. The two least probable letters have codewords with the same
maximum length |,

3. In the tree corresponding to the optimum code, there must be
two branches stemming from each intermediate node.

4. Suppose we change an intermediate node into a leaf node by
combining all the leaves descending from it into a composite
word of a reduced alphabet. Then if the original tree was
optimal for the original alphabet, the reduced tree is optimal for
the reduced alphabet.

Condition 1: 1¢ P(a) >= P(a) , then ; <=1, whete L is the length

of the codeword .

O Easy to see why?
O Proof by contradiction:

= Suppose a code X is optimal with P(a;) >= P(a,), but |, > I,

= By simply exchanging a; and a, we have a new code Y in which,

its average length = > lp: is smaller than that of code X.
m Hence, the contradition is reached. Thus, condition must hold

Condition 2: The two least probable letters have codewords with

the same maximum length 1 _

O Easy to see why?

O Proof by contradiction:

m Suppose we have an optimal code X in which, two codewords with lowest
probabilities ¢; and ¢; and that ¢; is longer than ¢; by k bits.

= Then because this is a prefix code, c; cannot be the prefix to ¢;. So, we
can drop the last k bits of c.

= We also guarantee that by dropping the last k bits of c;, we still have a
decodable codeword. This is because c; and c; have the longest length
(least probable codes), hence they cannot be the prefix of any other
code.

= By dropping the k bits of ¢, , we create a new code Y which has shorter
average length, hence contradiction is reached.

Condition 3: 1n the tree corresponding to the optimum code,

there must be two branches stemming from each intermediate
node.

O Easy to see why?

= |If there were any intermediate node with only one branch
coming from that node, we could remove it without affecting the
decodability of the code while reducing its average length.

Condition 4:

O Suppose we change an intermediate node into a leaf node by combining
all the leaves descending from it into a composite word of a reduced
alphabet. Then if the orginal tree was optimal for the original alphabet,
the reduced tree is optimal for the reduced alphabet.

e: 00
c: 01
d:1

Huftman code satisties all four conditions

O Lower probable symbols are at longer depth of the tree
(condition 1).

o Two lowest probable symbols have equal length (condition
2).

O Tree has two branches (condition 3).

O Code for the reduced alphabet needs to be optimum for the
code of the original alphabet to be optimum by construction
(condition 4)

Optimal Code Length (Huffman Code
Length)

H(S) <1< H(S)+1

] : Average length of an optimal code

H(S)=-) P(a;)log,P(a), : Entropy of the source
=1

Proof:

Extended Huffman Code

A={a a,,.a,} A’ ={aa,..a,8,a,..8,,..., 8,8,

n times

m" symbolsin the A" alphabet

H(S)< I <H(S)+1/n

] : Average length of Huffman Code
H(S) : Entropy of the source

Proof: page 53 of the book

Huttman Coding: Pros and Cons

Fast implementations.
Error resilient: resynchronizes in ~ |I°steps.

- The code tree grows exponentially when the source is
extended.

- The symbol probabilities are built-in in the code.

-

Huftman Coding ot 16-bit CD-quality

audio
Filename Original file Entropy (bits) | Compressed | Compression
size (bytes) File Size Ratio
(bytes)
Mozart 939,862 12.8 725,420 1.30
symphony
Folk rock 402,442 13.8 349,300 1.15
(Cohn)
Huffman coding of the Differences
Filename Original file Entropy (bits) | Compressed Compression
size (bytes) File Size Ratio
(bytes)
Mozart 939,862 9.7 569,792 1.65
symphony
Folk rock 402,442 10.4 261,590 1.54

(Cohn)

Complexity of Huftman Code

o O(n log(n))

= Log(n) is the depth of the tree and n operation to
compare for the lowest probabilities.

Notes on Huffman Code

O Frequencies computed for each input

= Must transmit the Huffman code or frequencies as well
as the compressed input.

= Requires two passes

O Fixed Huffman tree designed from training data

m Do not have to transmit the Huffman tree because it is
known to the decoder.

m H.263 video coder

O 3. Adaptive Huffman code
= One pass
= Huffman tree changes as frequencies change

