Multimedia Networking
ECE 599

Prof. Thinh Nguyen

School of Electrical Engineering
and Computer Science

Based on B. Lee’s lecture notes.

Outline

0 Compression basics
O Entropy and information theory basics

O Lossless coding
= Run-Length
= Huffman
= Arithmetic

O Lossy coding
x DPCM

Compression basics

m Redundancy exists in many places
Texts
= Redundancy(German) > Redundancy(English)
Video and images
= Redundancy (videos) > redundancy(images)
Audio
= Redundancy(music) ? Redundancy(speech)
m Eliminate redundancy — keep essential information
Assume 8 bits per character
Uncompressed: aaaaaaaaab: 10x8 = 80 bits
Compressed: 9ab = 3x8 = 24 bits
= Reduce the amount of bits to store the data
Small storage, small network bandwidth, low storage
devices.
= Ex: 620x560 pixels/frame
= 24 bits/pixel === 1 MB
= 30 fps — 30 MB/s (CD-ROM 2x 300KB/s)
= 30 minutes . 50GB

Compression basics

L] Uncompressed [] Compressed
MB
100,000
337G
10,000
1+ 000 119G | 620m
: 342M
100 53M 46
18M .
10 450 4.9M
1.6M
1 468K
601
0.1 TIK 51 701 251
a1 :
32K
0.01 e 20:1
2K :
- 15:1
ooo1 L &1
Text Fax Computer 35MM Audio Videoconf- TV- HOTV
Image Slide CD- erence Quality High-
SVGA Quality ISDN Quality
Stereo Video-
Quality

1Page 1Page 1image 1Slide —=— 5 Minute Presentation ——

Compression methods

o JPEG (DCT), JPEG-2000 (Wavelet)
» Images

O JBIG
= Fax

o LZ (gzip)

m Text

O MPEG
= Video

16:1 compression ratio

Compression Classification

eDecoded data = original data eDecoded data — original data
«Comp. ratio < lossy comp. ratio eComp. ratio > lossless comp. ratio
<Eliminate redundancy eKeeping important information
eUsed where errors are not eUsed where small errors are allowed,
allowed, e.g, computer programs. e.g, images, videos.

eLZ, JBIG «JPEG, MPEG

Information theory basics

Amount of information within data is defined as the number of
bits to represent different patterns in the data (Hartley 1928).

A message of | symbols and every symbol has a choice of N possibilities.

Number of possible patterns is n

Number of bits to present different patterns is I IOg{n}

Information theory basics

O Shannon’s measure of information is the number of bits to
represent the amount of uncertainty (randomness) in a
data source, and is defined as entropy

H = —Zn’, p; log(p;)

Where there are [l symbols 1, 2, ... 1, each with

probability of occurrence of pi

Examples

An binary image can be considered a random source of two
symbols “black” and “white”.

P(black) < p(white) P(black) > p(white)

More uncertainty = more information

Entropy Intuition

Why H=-> p,log(p;)
i1=1

Suppose you have a long random string of two binary symbols O and 1, and the
probability of symbols 1 and 0 are [0, and [J;

Ex: 00100100101101001100001000100110001

If any string is long enough say N, it is likely to contain Np0 O’s and Np1 1’s.
The probability of this string equal to

P= p(l)\l & plel

Hence, # of possible patterns is 1/ p = paNpO pl_Npl

1
bits to represent all possible patterns is |Og(paNpO pl_Npl) = —Z Np| |Og P
i=0
The average # of bits to represent the symbol is therefore

1
_Z p; log p, 0
i=0

Entropy and compression

O Entropy is the minimum number of bits per symbols to
completely represent a random data source.

O A compression scheme is optimal if its average number of
bits/symbol equals to the entropy.

O Example: in an 8-bit image with uniform distribution of
pixel values, i.e. p. =1/256 , the entropy of this image is

8 bits.

255 255 1 1

—iZ:O: p; log p, :_iZ:(:‘Z—%I 92—56 8

11

Entropy and compression

O We are interested in finding a map from the symbols to the
code such that the average bits/symbols equals to the
entropy.

O Clearly, this depends on the distribution, i.e. the
probability of occurrences of each symbol.

O Intuitively, we want to use fewer bits to represent the
frequent symbols, and longer bits to represent rare
symbols in order to minimize the average bits/symbols.

O Example: suppose the source contains 3 symbols a, b, and c
with p(a) = .8, p(b) = .15 and p(c) = .05.
a=>~0
b=10 average bits/symbols = .8 + .15*2 + .05*2
c=11 12

Lossless coding: Run-Length encoding
(RLE)

0 Redundancy is removed by not transmitting
consecutive pixels or character values that are

equal.

O The repeated value can be coded once, along
with the number of times it repeats.

O Useful for coding black and white images e.g. fax.

13

Binary RLLE

O Code the run length so O’s using k bits. Transmit the code.
O Do not transmit runs of 1’s.

O Two consecutive 1’s are implicitly separately by a zero-length
run of zero.

Example: suppose we use 4 bits to encode the run length
(maximum run length of 15) for following bit patterns

0...010...0010...010...0110...0 91 bits

l|lI
/ 1 4
A
y

1110 1001 0000 1111 0101 1111 1111 OOOO 0000 1011 40 bits!

N

All 1’s indicate the next group
is part of the same run

RI.E Performance

0 Worst case behavior: transition occurs on
each bit. Since we use K bits to represent
the transition, we wasted k-1 bits.

O Best case behavior: no transition and use
k bits to represent run length then the
compression ratio is (2Mk-1)/K.

15

Lossless coding: Huttman Coding

O Input values are mapped to output values
of varying length, called variable-length
code (VLO).

O Most probable input values are coded with
fewer bits.

0 No code word can be prefix of another
code word.

16

Huffman Code Construction

O Initialization: put all nodes (values, characters, or
symbols) in an sorted list.

O Repeat until the list has only one node:

= Combine the two nodes having the lowest frequency
(probability). Create a parent node assigning the sum of
the children’s probability and insert it in the list.

= Assign code 0O, 1 to the two branches and delete children
from the list.

17

Huttman example

symbol Codeword Probability

Huttman Efticiency

O Entropy H of the example above

H = (5/8)log(5/8) + 2(3/32)log(3/32)+ 2(1/32)log(1/32) +
(1/8)log(1/8) = 1.75 bits

0 Huffman code:

5/8 + (3/32) 3 + 3 (3/32) + 4 (1/32)+3 (1/8) + 4 (1/32) = 1.81 bits
O Fixed length code: 3 bits.

0 Huffman code 1s much better than fixed
length code. e

Huffman coding

o Optimal if symbols are coded one at a time!

00 00 011

H(X)<R(X)<H(x)+1

20

Arithmetic Coding

0o Huffman coding method is optimal when and only
when the symbol probabilities are integral powers of
2, which rarely Is the case.

o In arithmetic coding, each symbol is coded by
considering prior data

= Relies on the fact that coding efficiency can be improved
when symbols are combined.

= Yields a single code word for each string of characters.

= Each symbol is a portion of a real number between O and 1.

21

Arithmetic vs. Huffman

= Arithmetic encoding does not encode each
symbol separately; Huffman encoding does.

= Arithmetic encoding transmits only length of
encoded string; Huffman encoding transmits
the Huffman table.

= Compression ratios of both are similar when
the entropy is high. When entropy is low,
arithmetic coding outperforms Huffman coding.

22

Arithmetic Coding Algorithm

BEGIN
low=0.0; high=1.0; range=1.0;
while (symbol != terminator){
low = low + range * Range_low(symbol);
high = low + range * Range_high(symbol);
range = high - low;
¥

output a code so that low <= code < high;
END

23

Arithmetic Coding Example

Example: P(a) = 0.5, P(b) = 0.25, P(c) =0.25
Coding the sequence “b,a,a,c”
L0 b o 4 o 4 1.0 c

Qs " 05 05

- D.‘lﬂi- 04375 I ——[4375.453125)
0375 0375 -

P Binary rep. of
0.25_ ~7 025 0.25 final interval

[0.0111,0.011101)

0 S| 0 0
025xP(@)=0.125 0.125xP(a)=0.0625 0.0625xP(c)=0.01563

24

Arithmetic Coding Example

* Size of the final subinterval, 1.e., range s, 15 0.4375 - 0.453125 =
0.015625, which 1s also determined by the product of the probabilities
of the source message, P(b)xP(a)xP(a)xP(c).

* The number of bits needed to specify the final subinterval 1s given by
at most [-log,s| = 6 bits.
* Choose the smallest binary fraction that lies within [0.0111,0.011101).
— Code1s 0111 (from 0.0111)!
* Entropy H1s .5(1) +.25(2) +.25(2) = 1.5 bits/symbol
* 4 symbols encoded with 6 bits gives 1.5 bits/symbol!

* Fixed length code would have required 2 bits/symbol.

Code Generator for Encoder

BEGIN

code =0;

k=1;

while (value(code) < low) {
assign 1 to the kth binary fraction bit;
if (value(code) > high)

replace the kth bit by O;

k=k+1;

END

26

Code Generator Example

e For the previous example low = 0.4375 and high =
0.453125.
— k=1:0.1(0.5)>high& 0.0 <low =>continue
— k=2:0.01(0.25) <high & 0.01 <low => continue
— k=3:0011 (0.375) <high & 0.01] < low => continue
— k=4:00111(0.4375) <high & 0.0111 = low => terminate

e Output code 1s 0111 (from 0.0111)

27

Decoding

BEGIN

get binary code and convert to decimal value = value(code);

do {
find a symbol so that

Range_low(symbol) <= value < Range_high(symbol)

output symbol;
low = Range_low(symbol);
high = Range_high(symbol);
range = high - low;
value = [value - low] / range

}

until symbol 1s a terminator
END

28

Decoding Example

g =D

0.5
0.4375—
025
C
0
4375

025

LY
.
N
_\“
() A

[.4375-.25)/P(b) =75

-
k)
1S
1
-
k)
1S
1
-
k)
L
1

10 =a
d
0.
b
C
0 %

[.75-.5]/P(a) =.5

10 =c
d
0.5
b
025
C
0

[.5-.5]/P(a) =0

Arithmetic Coding Issues

e Need to know when to stop, e.g., in the previous example,
0 can be ¢, cc, ccc, etc. Thus, a special character 1s
included to signal end of message.

* Also, precision can grow without bound as length of
message grows. Thus, fixed precision registers are used
with detection and management of overflow and
underflow.

e Thus, both use of message terminator and fixed-length
registers reduces the degree of compression.

30

Arithmetic Coding Intuition

Sequence with larger probability is
represented with larger range s, hence
smaller number of bits.

31

Huffman Coding, Run-L.engh Coding,
and Arithmetic Coding Question

AAAAABAAAAAAAAAAAAABBCCA

AABAABABCABACBACBCABCCCA

32

Is there such thing as too much
compression?

o What if an error happens in the encoded
bit stream, e.g. a bit flips or lost packet?

= What happens to the decoded data? Is it all
corrupted.

= How extensive Is the damage to the data?

O Little redundancy can be a good thing!
(for transmission over lossy channel)

33

	Multimedia NetworkingECE 599
	Outline
	Compression basics
	Compression basics
	Compression methods
	Compression Classification
	Information theory basics
	Information theory basics
	Examples
	Entropy Intuition
	Entropy and compression
	Entropy and compression
	Lossless coding: Run-Length encoding (RLE)
	Binary RLE
	RLE Performance
	Lossless coding: Huffman Coding
	Huffman Code Construction
	Huffman example
	Huffman Efficiency
	Huffman coding
	Arithmetic Coding
	Arithmetic vs. Huffman
	Arithmetic Coding Algorithm
	Arithmetic Coding Example
	Arithmetic Coding Example
	Code Generator for Encoder
	Code Generator Example
	Decoding
	Decoding Example
	Arithmetic Coding Issues
	Arithmetic Coding Intuition
	Huffman Coding, Run-Lengh Coding, and Arithmetic Coding Question
	Is there such thing as too much compression?

