Introduction to Wavelet

Based on A. Mukherjee’s lecture notes



Contents

O History of Wavelet

O Problems of Fourier Transform

0 Uncertainty Principle

O The Short-time Fourier Transform
O Continuous Wavelet Transform

O Fast Discrete Wavelet Transform
O Multiresolution Analysis

O Haar Wavelet



Wavelet Definition

“The wavelet transform is a tool that cuts up data,
functions or operators into different frequency

components, and then studies each component with a
resolution matched to its scale”

---- Dr. Ingrid Daubechies, Lucent, Princeton U

Sine Wave Wavelet (db10)




Wavelet Coding Methods

o EZW - Shapiro, 1993
= Embedded Zerotree coding.

0 SPIHT - Said and Pearlman, 1996

= Set Partitioning in Hierarchical Trees coding. Also uses
“zerotrees”.

o ECECOW - Wu, 1997

= Uses arithmetic coding with context.

o EBCOT — Taubman, 2000
= Uses arithmetic coding with different context.

0o JPEG 2000 — new standard based largely on
EBCOT



Comparison of Wavelet Based JPEG
2000 and DCT Based JPEG

o JPEG2000 image shows
almost no quality loss from
current JPEG, even at
158:1 compression.




Introduction to Wavelets

o "... the new computational paradigm [wavelets] eventually
may swallow Fourier transform methods..."

O " ...a new approach to data crunching that, if successful,
could spawn new computer architectures and bring about
commercial realization of such difficult data-compression
tasks as sending images over telephone lines. ™

---- from "New-wave number crunching” C. Brown, Electronic Engineering Times, 11/5/90.



Timeline

Wavelefs have had an unusual scientific history, marked by many independent discoveries and mascovenss
The mog rapid progress has come since the eary 19805 when a coherent mathematical theory of wavelets finally amenged
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Model and Prediction

O Compression is PREDICTION.
O There are many decomposition approaches to

modeling the signal.
= Every signal is a function.
= Modeling is function representation/approximation.
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Methods of Function Approximation

O Seguence of samples
= Time domain

o Pyramid (hierarchical)
O Polynomial

O Piecewise polynomials
= Finite element method

O Fourier Transform
= Frequency domain
= Sinusoids of various frequencies

O Wavelet Transform
= Time/frequency domain




The Fourier Transform

o Analysis, forward transform:
F(u) = j f (t)e 12 dt
O Synthesis, inverse transform:
f(t) :'fF(u)e"z”“tdu
O Forward transform decomposes f(t) into
sinusoids.

= F(u) represents how much of the sinusoid with
frequency u is in f(t).

O Inverse transform synthesizes f(t) from
sinusoids, weighted by F(u).




The Fourter Transtorm Properties

O Linear Transform.

O Analysis (decomposition) of signals into
sines and cosines has physical
significance

= tones, vibrations.
O Fast algorithms exist.

= The fast Fourier transform requires O(nlogn)
computations.




Problems With the Fourier Transform

O Fourier transform well-
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signals — statistics of the | | | [ ]
signals do not vary with NEYATAVRTAT R |,| ,lm I
time. This model does not .| s '\ |
fit real signals well. oo m m m

o For time-varying signals or § * |
sighals with abrupt
transitions, the Fourier “T
transform does not provide § ookt Mrww L —

Information on when Positive requencies
transitions occur.

40 —

agnitude of Fourier transform
2
|




Problems With the Fourier Transform

O Fourier transform is a “global” analysis. A small
perturbation of the function at any one point on the time-
axis influences all points on the frequency-axis and vise
versa.

O A qualitative explanation of why Fourier transform fails to
capture time information is the fact that the set of basis
functions ( sines and cosines) are infinitely long and the
transform picks up the frequencies regardless of where it
appears in the signal.

O Need a better way to represent functions that are localized
In both time and frequency.



Uncertainty Principle
-—- Preliminaries for the STEFT

O The time and frequency domains are
complimentary.
= If one is local, the other is global.

= For an impulse signal, which assumes a constant value
for a very brief period of time, the frequency spectrum is
Infinite.

= If a sinusoidal signal extends over infinite time, its
frequency spectrum is a single vertical line at the given
frequency.

o We can always localize a signal or a frequency
but we cannot do that simultaneously.

= If the signal has a short duration, its band of frequency
IS wide and vice versa.



Uncertainty Principle

O Heisenberg’s uncertainty principle was
enunciated in the context of guantum
physics which stated that the position and
the momentum of a particle cannot be
precisely determined simultaneously.

O This principle is also applicable to signal
processing.




Uncertainty Principle

— In Signal Processing

Let g(t) be a function with the property .

Then T\g(t)Z\dt =

(j(t t)’ g dt)(j(f—f )’ |G()]] dt>>16H2

where tm, fm denote average values of t and f ,and G(f) is
the Fourier transform of g(t).

= [t1g@® [ dt
=jf|c3(t)|2dt




Gabot’s Proposal
Short-time Fourier Transtform.

O The STFT is an attempt to
alleviate the problems with
FT.

Amplitude

O It takes a non-stationary )
signal and breaks it down Time
Into “windows” of signals
for a specified short period
of time and does Fourier
transform on the window
by considering the signal
to consist of repeated Time
windows over time. STET
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The Short-time Fourier Transform
Time-frequency Resolution
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The Short-time Fourier Transform

O Analysis:

STFT (z,u) = j f ()W (t —7)e 12t
O Synthesis:

f(t)= j STFT (z,u)w(t — 7)e’?“'d zdu
O where w(t) Is a window function localized in time
and frequency.

O Analysis functions are sinusoids windowed by
w(t).

O Common window functions
= Gaussian (Gabor), Hamming, Hanning, Kaiser.
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T'he Short-time Fourier Transform
Properties

O Linear transform.

O Time resolution (At) and frequency
resolution (Au) are determined by w(t),
and remain fixed regardless of Tor u.

O Biggest disadvantage:

= since At and Au are fixed by choice of w(t),

need to know a priori what w(t) will work for
the desired application.



Basic Idea of the Wavelet Transform
-- Time-trequency Resolution

O Basic idea:

= At, Au vary as a function of scale
(scale = 1/frequency).
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Wavelet Transformation

O Analysis
1 t - S . scale
WT (S’-T) = <Wr,s’ f (t)> = ﬁj f (t)l//(TT)dt T posiltion
O SyntheS|S WT: coefficient
1 t—7
t) = WT (s, 7)w (——)dsd 7 + cd(t
X(t) Cwﬁﬁw (5, 1)y (—_—)dsd 7 +c(t)

= where (1) is the mother wavelet.
= admissibility condition

oW () .
Cﬁfo‘ f df <o j_w%,f(t)=0




Scaling

o Scaling = frequency band

o Small scale %\/\/\k

= Rapidly changing details,

= Like high frequency ‘W
O Large scale

= Slowly changing details
= Like low frequency

Wavelet Basis functions
at 3 different scales

Scale

P

y




More on Scale

O It lets you either narrow down the frequency
band of interest, or determine the frequency
content in a narrower time interval

O Good for non-stationary data

O Low scale> a Compressed wavelet-> Rapidly
changing details-> High frequency.

O High scale —2>a Stretched wavelet - Slowly
changing, coarse features - Low frequency.




Shifting

e Shifting a wavelet simply means delaying (or hastening)
its onset.

e Mathematically, shifting a function f(t) by k is represented

by f(t-K).
al. Al
I:“ = UU‘- - D = Uua' =
Wavelet function Shifted wavelet function

Wit) wit—k)




The Wavelet Transtorm Properties

O Linear transform.

o All analysis functions v, —t//(—) are shifts and
dilations of the mother wavelet® y(t)

O Time resolution and frequency resolution vary as
a function of scale.

O Continuous wavelet transform (CWT)
= S and Tare continuous.

O Discrete wavelet transform (DWT)
= S and Tare discrete.




Different Types of Mother Wavelets

o | M\/\M \/\ A
A i

Haar Meyer Daubechies
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Calculate the CW'T Coefficients

O The result of the CWT are many wavelet
coefficients WT

WT (5,7) = (1, T (1)) = % [ fOwE e

= Function of scale and position.
O How to calculate the coefficient?

for each SCALE s
for each POSITION t
WT (s, t) = Signal x Wavelet (s, t)
end
end




Calculate the CW'T Coefficients

1.  Take a wavelet and compare it to
a section at the start of the
original signal.

2. Calculate a correlation coefficient
WT

3. Shift the wavelet to the right and
repeat steps 1 and 2 until you've
covered the whole signal.

4. Scale (stretch) the wavelet and
repeat steps 1 through 3.

5. Repeat steps 1 through 4 for all
scales.

Signal v’_\ﬂ.m

Wavelst :

WT = 0.0102

Wt [ _th 3

Wavelet 3

WT=0.2247



Discrete Wavelet Transtform

O Calculating wavelet coefficients at every possible scale is a
fair amount of work, and it generates an awful lot of data.

o What if we choose only a subset of scales and positions at
which to make our calculations?

O It turns out, rather remarkably, that if we choose scales
and positions based on powers of two --- so-called dyadic
scales and positions --- then our analysis will be much
more efficient and just as accurate.



Discrete Wavelet Transtform

o If (s, 1) take discrete value in R?, we get DWT.
O A popular approach to select (s, 1) is

1
S:—m S, =2 — s=im:<1,1,1,£,...>, m: integer
S 2 2 4 8
Nz n :
T = mO 3022, z'O:]_, T=_— n, m: integer
Sy 2
O So,

V/s,r(t)=\/l§w( ) =27y 12m =y (1) = 272 (27t )




Discrete Wavelet Transtform

O Wavelet Transform: .
DWT,, =< f (t), ., (t) >= 2" [ f () (2"t~ )l

O Inverse Wavelet Transform
f(t)=2 > DWT, v, (1) +cd(t)

o If f(t) is continuous while (s, 1) consists of discrete
values, the series is called the Discrete Time Wavelet
Transform (DTWT).

o If f(t) is sampled (that is, discrete in time, as well as (s,
T) are discrete, we get Discrete Wavelet Transform
(DWT).
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Haar Scaling function

o The Haar transform uses a scaling function and
wavelet functions.

O Scaling function \
= Calculate scaling function 1

c =< f (1), d(t) >=[ f (t)Dd(t)dt T

= Synthesis the original signal

f(t)=Y 5 DWT, () + cO(t)




Example of Fast DWT,
Haar Wavelet

o Given input value {1, 2, 3,4, 5, 6, 7, 8}
O Step #1

= Output Low Frequency {1.5, 3.5, 5.5, 7.5}

= Output High Frequency {-0.5, -0.5, -0.5, -0.5}
O Step #2

= Refine Low frequency output in Step #1
L: {2.5, 6.5}
H: {-1, -1}
O Step #3
= Refine Low frequency output in Step #2
L: {4.5}
H: {-2}



Fast Discrete Wavelet Transform

O Behaves like a
filter bank
= signal in
m coefficients out

O Recursive
application of a
two-band filter
bank to the
lowpass band of

the previous stage.
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Fast Discrete Wavelet Transform

Step 1: Filter input with Step 2: Filter low band with

L(f) and H(f). L(f) and H(f).
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Step 3: Filter low band with Step 4: Filter low band with
L(f) and H(f). L(f) and H(f).
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Fast Wavelet Transtorm Properties

O Algorithm is very fast
= O(n) operations.

O Discrete wavelet transform i1s not shift invariant.
= A deficiency.

O :((e))/ to the algorithm is the design of h(n) and
n).

= Can h(n) and I(n) be designed so that wavelets and
scaling function form an orthonormal basis?

= Can filters of finite length be found?
= YES.
Daubechies Family of Wavelets
Haar basis is a special case of Daubechies wavelet.




Daubechies Family of Wavelets

D4 Scaling function D4 Wavelet function
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Two Dimensional Transtform

low resolution

subband '/
horizontal vertical LL LH
transform transform
N L H >
HL HH
Transform Transform 3 detail
each row each column subbands

in L and H




Two Dimensional Transform
(Continued)

_ LLLL | LHLL
LL LH horizontal [LLL|HLL| LH vertical LH
transform transform  |" "
HL HH HL HH HL HH
Transform Transform
each row in LL each column in
LLL and HLL

2 levels of transform gives 7 subbands.
kK levels of transform gives 3k + 1 subbands.



1D Haar Wavelet

O Mother Wavelet
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Wavelet Transtormed Image

O Three levels of Wavelet transform.
= One low resolution subband.
= Nine detall subband.
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