A Survey of Packet Loss Recovery Techniques for Streaming Audio

By Colin Perkins, Orion Hodson, and Vicky Hardman
University College London
Outline

- Streaming Audio and Multicast
- Packet Loss Recovery Techniques
 - Sender-based repair techniques
 - Retransmission
 - Error correction
 - Receiver-based repair techniques
 - Insertion
 - Interpolation
 - Regeneration
- Conclusion
- Questions
Streaming Audio and Multicast

- Recovery techniques target on streaming audio data
- e.g. audio conferencing
- Multicast
 - One to many connections
 - Sending multiple copies along the network
 - Multicast channel has relatively high latency
 - Trade-off between quality and interactivity to be made by receiver independently
Sender-based Repair Techniques

- Active
 - Retransmission

- Passive
 - Interleaving
 - Forward Error Correction (FEC)
 - Media-independent FEC
 - Media-specific FEC
Interleaving

- Out-of-order transmission
- Reconstruct packets at receiver’s side

![Diagram](image)

Figure 6. Interleaving units across multiple packets.
Interleaving

- **Advantage**
 - No increase of bandwidth

- **Disadvantage**
 - Increase latency
 - Not suitable for interactive application
Media-Independent FEC

- Using block or algebraic code
 - e.g. Reed-Solomon code
- k data bits and n-k additional check bits
- Data could be recovered from the check bits
Media-Independent FEC

- **Advantages**
 - Does not depend on the content of the packet
 - Computation to derive the error correction is small and simple to implement

- **Disadvantages**
 - Consume extra bandwidth
 - Difficult on decoder implementation
Media-Specific FEC

- Target on audio in multiple packets
- Primary and secondary encoding
 - Different encoding
 - Usually secondary encoding uses lower bandwidth and quality
Figure 5. Repair using media-specific FEC.
Receiver-based Repair Techniques

- Insertion-based Repair
- Interpolation-based Repair
- Regeneration-based Repair
Insertion-based Repair

- Insert a simple fill-in as a replacement of the loss packet
 - Splicing
 - Zero length fill-in
 - Require an adaptive playout buffer
 - Silence Substitution
 - Fill with a silence substitution
 - Simple to implement
 - Effective for short packet lengths (< 4ms) and low loss rate (< 2%)
 - Noise Substitution
 - A background noise is inserted
 - Repetition
 - Replace with the previous received packet
Interpolation-based Repair

- **Waveform Substitution**
 - Uses audio before or after to find for suitable signal to replace the loss

- **Pitch Waveform Replication**
 - In addition to waveform substitution with a pitch detection algorithm

- **Time Scale Modification**
 - Allows audio on either sides to stretch across the loss
 - Requires more computation
Figure 9. (a) Sample error concealment techniques: original audio signal; (b) sample error concealment techniques: the loss pattern; (c) sample error concealment techniques: packet repetition; (d) sample error concealment techniques: one sided waveform substitution.
Regeneration-based Repair

- Interpolation of Transmitted State
 - Based on the transform coding or linear prediction
 - Use decoder to interpolate between states

- Model-Based Recovery
 - Use a model to generate speech to cover the loss
 - e.g. use autoregressive analysis on the last received set of sample
Figure 8. Rough quality/complexity trade-off for error concealment.
Conclusion

- Non-interactive applications
 - Interleaving, media-dependent FEC, etc
- Interactive applications
 - Need to minimize the end-to-end delay
 - Media-independent FEC