BJT amplifier DC Operating Point

Consider the circuit below with the assumption that the transistor is in the active forward region and $\beta=100$. Lets solve for the voltage $V_{\text {out }}$.

Figure 1: BJT Amplifier Circuit
To analyze this circuit, first write the KVL loop equation around the base-emitter circuit.

$$
-1+10000 I_{b}+0.7+1000 I_{e}=0
$$

however, we know that

$$
I_{c}=\beta I_{b} \text {, thus } I_{e}=\left(I_{b}+\beta I_{b}\right)=(\beta+1) I_{b}
$$

Now, rewriting the KVL loop equation, we get:

$$
\begin{gathered}
-1+10000 I_{b}+0.7+1000(\beta+1) I_{b}=0 \\
-1+10000 I_{b}+0.7+101000 I_{b}=0 \\
111000 I_{b}=0.3 \\
I_{b}=2.7 \mu \mathrm{~A}
\end{gathered}
$$

Now, knowing I_{b}, we can calculate I_{c} and thus the voltage drop across the collector resistor.

$$
I_{c}=100(2.7 \mu A)=270 \mu A ;
$$

thus the voltage drop across the collector resistor is:

$$
10000(270 \mu \mathrm{~A})=2.7 \mathrm{~V}
$$

and therefore,

$$
V_{\text {out }} \text { is } 10-2.7=7.3 \mathrm{~V} \text {. }
$$

As a check to our assumption that the transistor is not in saturation, we can see that:

$$
\begin{gathered}
V_{c e}=10-10000 I_{c}-1000 I_{e} \\
\text { where; } I_{e}=101 * 2.7 \mu \mathrm{~A}=.273 \mathrm{~mA}, \text { and } \\
I_{c}=100 * 2.7 \mu \mathrm{~A}=.27 \mathrm{~mA}, \text { therefore } \\
V_{c e}=10-10000(.00027)-1000(.000273)=10-2.7-.273 \\
V_{c e}=\underline{7.07 \mathrm{~V}} \text { (not in saturation) }
\end{gathered}
$$

