Voltage Multiplying Circuit

Below is shown a two-stage voltage multiplying circuit. It is a variation of what is called the Villard cascade voltage multiplier. Its input is an AC voltage source. It uses diodes and capacitors in an ingenious method to multiply an input voltage. Many stages identical to this one can be cascaded to create an output reaching hundreds of volts.

![Figure 1: A Two-Stage Villard Voltage Multiplier](image1)

Analysis:

- From time zero, suppose that $V1$ begins on a negative half-cycle. This means that its top terminal is more negative than its bottom one. Thus, as seen in 2, current flows out of $V1$ as shown.

- The current flowing out of $V1$ flows into $D1$ and $C1$ which begins to charge $C1$ to 5 volts. It cannot flow up through $C2$ or R_{load} as $D2$ opposes the flow of current in that direction.

- Also, current cannot flow down $D2$ towards $C2$ or R_{load} because ground will be at least one diode drop above the voltage on the anode of $D2$.

![Figure 2: Two Stage Voltage Multiplier During Negative Half-Cycle](image2)
In figure 3 when V_1 begins its positive half cycle, C_1 will have been charged to 5 volts. The 5 volts on C_1 plus the 5 volts on V_1 creates a combined 10 volts that flows through D_2 (D_1 is now reverse-biased) which charges C_2 and also supplies current to R_{load}. Note that R_{load} must not be so small that C_2 is so discharged that it cannot be recharged by C_1.

Figure 3: Two Stage Voltage Multiplier During Positive Half-Cycle

Below is shown an ngspice netlist for simulating this circuit.

```
Two Stage Voltage Multiplier
*model for fast schottky diode
.MODEL In5819 d IS=1.19279e-05 RS=0.0625421 N=1.16517 EG=1.3 XTI=3.22098 BV=40
+ IBV=0.001 CJO=1.50114e-10 VJ=1.5 M=0.590203 FC=0.5 TT=2.6273e-08
+ KF=0 AF=1

vs a 0 sin(0 5 1000 0 0) ;5 Vpp, 1000hz source
cl a b 10uf
_dl gnd b In5819 ;diode
c2 gnd v_out 10uf
_d2 b v_out In5819 ;diode
rload v_out 0 1k ;1k load resistor

.control
set noaskquit
set hcopydevtype=postscript
set hcopycolor=true
set color0 = rgb:f/f/f
set color1 = rgb:b/0/0
set color2 = rgb:b/0/0
.tran 0.01ms 12ms
.plot V(a) V(b) V(v_out) xl 0.01ms 12ms
* gnuplot v_multiplier V(a) V(b) V(v_out) xl 0.01ms 12ms ;make plot for latex
.endc
.end
```