Voltage dividers

Often, two resistors are put in series to develop a voltage that is some fraction of the voltage applied across them. Such an arrangement is called a voltage divider.

Figure 1: Voltage divider.
To solve for V_{x} in the general case of a voltage divider:

$$
\begin{aligned}
& \text { We know: } V_{x}=I \times R_{2} \text {, so first solve for I } \\
& -V+I_{R_{1}}+I_{R_{2}}=0 \quad \text { (the KVL loop equation for the circuit) } \\
& I\left(R_{1}+R_{2}\right)=V \\
& I=\left(V /\left(R_{1}+R_{2}\right)\right)
\end{aligned}
$$

Now, knowing I, multiply by R_{2} to get V_{x}.

$$
\begin{aligned}
& V_{x}=\left(V /\left(R_{1}+R_{2}\right)\right) \times R_{2}, \text { or } \\
& V_{x}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{1}
\end{aligned}
$$

This is the general form for determining the voltage created by a voltage divider.

