Voltage dividers

Often, two resistors are put in series to develop a voltage that is some fraction of the voltage applied across them. Such an arrangement is called a *voltage divider*.

Figure 1: Voltage divider.

To solve for V_x in the general case of a voltage divider:

We know: $V_x = I \times R_2$, so first solve for I

 $-V + I_{R_1} + I_{R_2} = 0$ (the KVL loop equation for the circuit) $I(R_1 + R_2) = V$ $I = (V/(R_1 + R_2))$

Now, knowing I, multiply by R_2 to get V_x .

$$V_x = (V/(R_1 + R_2)) imes R_2$$
, or $V_x = rac{R_2}{R_1 + R_2} imes V_1$

This is the general form for determining the voltage created by a voltage divider.