4. For the following circuit, using KCL, find:

1. \(V_A \)
2. \(V_B \)
3. Power dissipated by the voltage source
4. Power dissipated by the current source

\[R_2 = 1 \text{ ohm} \]
\[R_1 = \text{ let this be } R_1 \]

\[V = 5 \text{ V} \]

\[I_1 = \frac{5 - V_A}{4} \]
\[I_2 = \frac{V_A - V_B}{16} \]
\[I_3 = \frac{V_B}{8} \]

KCL current entering = current leaving

Write currents in terms of voltages

\[I_1 = I_2 + \frac{8}{16} \]
\[4(5 - V_A) = V_A - V_B + 128 \]
\[20 - 4V_A = V_A - V_B + 128 \]
\[-108 - 5V_A = -V_B \]

\[V_B = 5V_A + 108 \]

Node A

\[8 + I_2 = I_3 \]
\[8 + \frac{V_A - V_B}{16} = \frac{V_B}{8} \]
\[128 + V_A - V_B = 2V_B \]
\[3V_B = 128 + V_A \]
\[V_B = \frac{128 + V_A}{3} \]

Set two equations for \(V_B \) equal

\[\left(\frac{5V_A + 108 = 128 + V_A}{3} \right) \]
\[15V_A + 324 = 128 + V_A \]
\[14V_A = -196 \rightarrow V_A = -14 \text{ V} \]

Solve for \(V_B \):

\[V_B = 5V_A + 108 \]
\[V_B = 5(-14) + 108 \]
\[V_B = 38 \text{ V} \]

Power dissipated by voltage source

\[P = IV \text{ where } I = -I_1 \]
\[P = (-4.75) S \]
\[P = -23.75 \text{ W dissipated} \]

Power dissipated by current source

\[P = IV \text{ where } V = V_A - V_B \]
\[P = 8 (-52) \]
\[P = -416 \text{ W dissipated} \]