Inductors

3. For the circuit below:
 (a) What is the value of I_L at time t_{0+}?
 (b) What is the value of V_{L1} at time t_{0+}?
 (c) What is the value of I_{SRC} at time t_{0+}?
 (d) What is the value of I_L at time $t = \infty$?
 (e) What is the value of I_{R2} at time $t = \infty$?

![Circuit Diagram]

a. I_L at t_{0+} is zero as current cannot change instantaneously through the inductor.

b. V_{L1} at t_{0+} is 5V. Since no current flows through $L1$, $R1$ and $R2$ form a voltage divider.

c. I_{SRC} at t_{0+} is $\frac{10}{5+5}$ since no current is flowing through the inductor. (1 Amp)

d. At $t = \infty$, the inductor is a short circuit to DC, so $I_L = \frac{10}{5} = 2A$.

e. At $t = \infty$ I_{R2} = 0A, since $L1$ is a short circuit across $R2$.