
 of
rom

) and
envi-

re is
on
mory.
any
ures.

toast
rchi-

ecute
 terms
ntil the

 of
A Brief view of Computer Architecture
We do not intend to give a full explaination of computer architecture. However, we will
develop some intuitive models of how computers work. Let’;s start at a high level picture
how a computer could be structured and work down into the inner workings of the CPU f
there.

The simplest representation of a computer, one with only a CPU (central processing unit
a memory unit is shown below. This computer can’t do very much as it cannot effect its
ronment outside of its own memory.

In the figure above we see two different architectural styles. The Von Neumann architectu
representative of most computer architectures. The most distinguishing feature of the V
Neumann computer is that it stores both data and instruction information in the same me
The Harvard architecture computer stores instructions and data in separate memory. M
microcontroller architectures (like ones you would find in a toaster) are Harvard architect

As just mentioned, a computer system shown above could not turn on a light or pop your
out before it burns. It needs an I/O (input/output) port. Let’s add one to a Von Neumann a
tecture.

Now we have a resonable computer system. It can read instructions from a memory, ex
them, store the results and control external devices. The I/O adapter in the most simple
forms a temporary storage area where outputs may be posted and inputs may be held u
CPU can check them.

Note that we are not talking about PC architecture. A PC’s architecture is one examplea
computer architecture, it is not computer architecture in general.

memory CPU
address bus

data bus

both instructions and

Von Neumann Architecture Harvard Architecture

memory
CPU

address bus

data bus

memory
instruction

data

address bus

instruction bus

data go through here

memory CPU
address bus

data bus

I/O
adapter

output
input
Page 1

r

y sys-

ory

ion to
ss bus
ction

t the
the
Lets explore the CPU of a Von Neumann machine. The CPU is the brain of the compute
where lots of interesting things are happening.

The CPU executes a program that is fetched more or less sequentially from the memor
tem. To execute each instruction a number of steps are taken.

1. Fetch the instruction from the location from memory system specified by the mem
address register into the instruction register.
2. Decode the instruction, and increment the PC.
3. Fetch the operands.
4. Execute the desired operation using the ALU
5. Optionally access memory
6. Store the result in the desired location (could be a register or memory)

The program counter (PC) is a special register that holds the address of the next instruct
be fetched. To fetch an instruction, the contents of the PC is placed on the memory addre
and a read of memory is performed. When the instruction returns, it is placed in the instru
register.

Once the instruction is written into the instruction register, it is decoded to determine wha
instruction is and what action is to be taken. During this time, the PC is incremented to

control logic register file

instruction
register

memory data
register

memory write memory address

address bus

memory data bus

ALUr0
r1
r2

r30
r31

031

operand 1 bus

operand 2 bus

results bus

 data register
opcode rs1 rs2 rd

source register 1 addr

source register 2 addr

destination register addr

 register

memory system

program
counter
Page 2

 this
ction.

or

nd
PU
 or

r
he
ll be

p is usu-
r them
tion.

five
erand

 The
hat
is a
te the
ory

ss
dress

is writ-

n.
 here,
next instructions address in preparation for fetching it.

The decoding of the instruction will determine the major category of the instruction. For
example, (which is like many RISC microprocessors) there are three categories of instru
These arememory access, calculation andbranching.

Memory access instructions are only for bringing data from memory to the register file or f
putting data into memory from a register. Loading a register from memory is called aload
operation. Storing data to memory is called astore operation.

Calculation instructionsuse one or more operands in registers or in the instruction itself a
generate a result using the ALU. These instructions are performed entirely within the C
and do not access memory. Typically the calculation instructions are operations like add
subtract, or boolean operations like OR and AND.

Branch instructions are the decision making instructions. They have the ability to alter the
flow of a program depending on the results of a comparison. They also use the ALU. Fo
example, abranch not equalinstruction might compare the values to two operands held in t
register file and if they are not equal (as determined by a subtract operation), the PC wi
loaded with a new address other than thenext one in the instruction sequence.

Once the decoding of the instruction is done, the operands must be accessed. This ste
ally done in parallel with the decoding. The operands are accessed by the addresses fo
imbedded within the instruction. The operands are held in the register file at a certain loca
This location is accessed by fields within the instruction. In our example, three fields of
bits each will allow simultaneous access to three of the 32 register locations. Once the op
registers are accessed, they data from them flows directly to the ALU for processing.

The execution step is usually a simple combinatorial manipulation of the two operands.
action that the ALU takes is dictated by the opcode field in the instruction. Determining w
action the ALU takes on the operands is part of the decoding process. If the instruction
branch, the ALU serves two purposes, one to do some comparison, the other to calcula
branch address. For memory access instructions, the ALU is used to compute the mem
address of the operand to be loaded or stored.

Following the execution step is the memory access step used only by the memory acce
instructions. If a load or store is performed, the operand address is put on the memory ad
bus and the read or write signals to the memory are asserted. After some delay the data
ten or read from memory.

The last step in the execution of an instructions will only be taken by the store instructio
Once the operand is read from memory, we store it into the memory data register. From
in the last step the operand is stored into the register file.
Page 3

mod-
 com-

dvan-
table

amp
This process of execution can be easily viewed as a state machine model.

RISC versus CISC
There is another way to distinguish computer architectures. The competing architectural
els are known as RISC (reduced instruction set computer) and (complex instruction set
puter). The major differences are summarized below.

During the nineteen eighties, a great controversy existed over the advantages and disa
tages of each style of architecture. In the end, RISC seems to have to won. Even the no
surviving CISC architecture, Intel’s x86 family, has adopted many ideas from the RISC c
to maintain its performance.

Feature RISC CISC

Instruction size 1 word 1 to 54 bytes

Execution time 1 clock 1 to 100s of cycles

Addressing modes small large

Work done per instruction small varies

Instruction count/program large smaller

instruction
fetch

load instruction
register

instruction
decode

fetch
operands

executememorystore result access
Page 4

	A Brief view of Computer Architecture
	RISC versus CISC

