- Finding a starting point for biasing the BJT is confusing initially. Its not as easy or straightforward as you might expect.
- It's important to understand the basics of how the value of one resistor effects the amplifier's characteristics. There are a lot of moving parts and most are connected in some way. Its like a balloon. Poking in one place causes bulging elsewhere.
- There are many parameters to consider:
 - input impedance
 - output impedance
 - gain
 - current consumption/power dissipation
 - temperature stability
- In addition, you usually don't get to choose any resistor value but only standard ones; and preferably not 1% ones.

Consider the following common emitter amplifier.

- The parallel combination of R1 and R2 effects R_{in}. R3 effects the input impedance, gain and output swing of the amplifier.
- R3's effect on input impedance is modified by transistor β. Its resistance value is effectively multiplied by β.
- ▶ R1, R2 and R3 all effect the temperature behavior of the amplifier.
- ▶ R1||R2 should be at least $10R_{src}$ to lower *IR* drop across R_{src} .
- Current through R1 and R2 should be at least $10I_b$.
- ► AHHHHHH!!!!

- Here is general procedure for our simple amplifier circuits. It still requires some *fiddling* around. But, fiddling around gives insight.
- This procedure makes some simplifications, maintains stability (DC primarily) and gives pretty accurate results.
- Suppose we want a single-stage BJT amplifier with the following parameters:

•
$$V_{cc} = 10V$$
, Gain= 20, $I_{cc} < 20mA$

First we choose a suitable transistor:

- There are literally hundreds of transistors that could work.
- The short list would include the 2N2222, 2N3904, 2N4401.
- These are all cheap, easily obtainable transistors. They could be considered the "cockroaches" of the BJT transistor family tree. They will be around when all the others have disappeared.
- For this example we will look at the 2N4401. The important parameters are: V_{ceo}, β, I_c, and V_{be} which is about 0.6V at the current levels we are interested in.

Let's first take a look at the maximum ratings. These are values you want to stay away from.

MAXIMUM RATINGS							
Rating	Symbol	Value	Unit				
Collector – Emitter Voltage	V _{CEO}	40	Vdc				
Collector - Base Voltage	VCBO	60	Vdc				
Emitter – Base Voltage	V _{EBO}	6.0	Vdc				
Collector Current – Continuous	Ic	600	mAdc				
Total Device Dissipation (@ $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	625 5.0	mW mW/°C				
Total Device Dissipation @ $T_C = 25^{\circ}C$ Derate above $25^{\circ}C$	PD	1.5 12	W mW/°C				
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C				
THERMAL CHARACTERISTICS							
Characteristic	Symbol	Max	Unit				
Thermal Resistance, Junction-to-Ambient	R _{0JA}	200	°C/W				
Thermal Resistance, Junction-to-Case	R _{0JC}	83.3	°C/W				
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.							

- What's important here? Does this apply to our application?
- You have to carefully read datasheets and think about what they are telling you, what they are not, and what to carefully infer.
- > You must pay close attention to the conditions for each specification.

ON CHARACTERISTICS (Note 1)					
DC Current Gain	$\begin{array}{l} (I_{C}=0.1 \text{ mAdc}, \text{ V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=1.0 \text{ mAdc}, \text{ V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=10 \text{ mAdc}, \text{ V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=150 \text{ mAdc}, \text{ V}_{CE}=1.0 \text{ Vdc}) \\ (I_{C}=500 \text{ mAdc}, \text{ V}_{CE}=2.0 \text{ Vdc}) \end{array}$	h _{FE}	20 40 80 100 40	- - 300 -	-
Collector-Emitter Saturation Voltage	$(I_C$ = 150 mAdc, I_B = 15 mAdc) $(I_C$ = 500 mAdc, I_B = 50 mAdc)	V _{CE(sat)}		0.4 0.75	Vdc
Base - Emitter Saturation Voltage	$(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc})$ $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$	V _{BE(sat)}	0.75 -	0.95 1.2	Vdc

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Now, what's this telling us? What's important, what's not?

Now we see what Note 1 tells us. Did you miss that before?

SMALL-SIGNAL CHARACTERISTICS								
Current-Gain - Bandwidth	Product $(I_C = 20 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 100 \text{ MHz})$	f _T	250	-	MHz			
Collector-Base Capacitance	e (V _{CB} = 5.0 Vdc, I _E = 0, f = 1.0 MHz)	C _{cb}	-	6.5	pF			
Emitter-Base Capacitance	$(V_{EB} = 0.5 \text{ Vdc}, I_C = 0, f = 1.0 \text{ MHz})$	Ceb	-	30	pF			
Input Impedance	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{ie}	1.0	15	kΩ			
Voltage Feedback Ratio	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{re}	0.1	8.0	X 10 ⁻⁴			
Small-Signal Current Gain	$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 1.0 \text{ kHz})$	h _{fe}	40	500	-			
Output Admittance	(I _C = 1.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{oe}	1.0	30	μmhos			
SWITCHING CHARACTERISTICS								
Delay Time	(V _{CC} = 30 Vdc, V _{BF} = 2.0 Vdc,	ta	-	15	ns			
Rise Time	I _C = 150 mAdc, I _{B1} = 15 mAdc)	tr	-	20	ns			
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	ts	-	225	ns			
Fall Time	I _{B1} = I _{B2} = 15 mAdc)	t _f	-	30	ns			
 Pulse Test: Pulse Width ≤ 300 us. Dutv Cvcle ≤ 2.0%. 								

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

- \blacktriangleright Let's look at the small signal current gain, h_{fe} . We can usually call this β .
- This tells us where we should set our transistor I_c .
- We want $\beta > 100$ to make our approximations work.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf, approximation approximation of the second s

- This graph tells how h_{fe} changes with I_c and temperature.
- Just something to keep in mind.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

From the datasheet, the following can be chosen as starting points:

▶ $I_c = 5mA$, as $\beta \ge 100$, power dissipation and I_c is not exceeded.

We will choose a circuit topology as shown below:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- For maximum dynamic range, we choose a quiescent $V_c = 5V$. So, $R4 = \frac{\frac{V_{cc}}{2}}{I_{cc}} = \frac{5}{.005} = 1000$ ohms
- Now, to minimize I_c variations due to temperature changing V_{be} we want R_eI_e > 10V_t where V_t is the thermal voltage or 26mV at 300deg C.
- Let's shoot for a V_e of 0.5V.
- If we make the assumption that β exceeds 100, $I_c \approx I_e$, so: $R3 = \frac{V_e}{I_e} = \frac{0.5}{.005} = 100$ ohms.
- Note the gain is roughly equal to $\frac{R4}{R3} = 10$. We will fix that later, wink, wink.

- Since we know V_e , we also know V_b and can solve for R1 and R2. $V_b = V_e + V_E = 1.1V$
- ▶ R1 and R2 can be solved for with Matlab or by hand.
- We want the current through the R1/R2 voltage divider $\approx 0.1 I_e$.
- This ensures that variations in I_b will not alter V_b. The voltage divider also reduces the variation in V_b with changes in V_{cc}.

Solving for R1, R2. First the voltage divider relation:

$$V_b = V_{cc} \left(\frac{R2}{R1 + R2}\right)$$
$$1.1 = 10 \left(\frac{R2}{R1 + R2}\right)$$

and so,

$$R2 = .11(R1 + R2)$$

 $R1 = 8.1R2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへで

Now keeping in mind that we want the current through the R1/R2 voltage divider ≈ 0.1*I*_e we can say:

$$\frac{V_{cc}}{R1 + R2} = 0.1(I_e) \text{ (neglicting Ib)}$$
$$\frac{10}{R1 + R2} = 0.1(.005)$$
$$\frac{10}{8.1R2 + R2} = .0005$$
$$10 = .0005(9.1R2)$$
$$R2 = 2197 \text{ ohms, and}$$
$$R1 = 17795 \text{ ohms}$$

In the implementation, we would use R1=18K and R2=2.2K ohms.

Our circuit (DC only) looks like this:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

Now, its time to simulate! And not a minute sooner.


```
.title dcopt1.sp
*determine dc operating point of transistor
.include 2n4401.mod
Vcc
      VCC
                   gnd
                                         10 v
R1
                   base
                                         18K
      vcc
R2
      base
                                         2.2K
                   gnd
R3
      emitter
                                         100
                   gnd
R4
                                         1 K
      VCC
                   collector
01
      collector
                                        2n4401
                   hase
                               emitter
.control
  op
; DC operating point analysis
  print v(base) v(emitter) v(collector) ; print DC voltages
. endc
. end
*results
*Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
*v(base) = 1.041303e+00
*v(emitter) = 3.774958e-01
*v(collector) = 6.249428e+00
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Our currents/voltages are a little bit off: V_b low, I_e low, V_c high

- Let's try fiddling a bit. Lowering R1 a bit should help all three parameters.
- We will try 15K instead of 18K. This raises V_b , V_e and lowers V_c .


```
.title dcopt2.sp
*determine dc operating point, fiddle #1
.include 2n4401.mod
                                        10 v
Vcc
      VCC
                   gnd
R1
                                        15K
      vcc
                   base
R2
      base
                   gnd
                                        2.2K
R3
                                         100
      emitter
                   gnd
R4
                   collector
                                        1 K
      VCC
01
      collector
                   base
                               emitter
                                        2n4401
.control
  op
; DC operating point analysis
  print v(base) v(emitter) v(collector) ; print DC voltages
. endc
end
*Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
*v(base) = 1,215030e+00
*v(emitter) = 5.411213e-01
*v(collector) = 4.622165e+00
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Are we good or what?!