Biasing the BJT

- Finding a starting point for biasing the BJT is confusing initially. Its not as easy or straightforward as you might expect.
- It's important to understand the basics of how the value of one resistor effects the amplifier's characteristics. There are a lot of moving parts and most are connected in some way. Its like a balloon. Poking in one place causes bulging elsewhere.
- There are many parameters to consider:
- input impedance
- output impedance
- gain
- current consumption/power dissipation
- temperature stability
- In addition, you usually don't get to choose any resistor value but only standard ones; and preferably not 1% ones.

Biasing the BJT

- Consider the following common emitter amplifier.

- The parallel combination of R1 and R2 effects $R_{\text {in }}$. R3 effects the input impedance, gain and output swing of the amplifier.
- R3's effect on input impedance is modified by transistor β. Its resistance value is effectively multiplied by β.
- R1, R2 and R3 all effect the temperature behavior of the amplifier.
$-R 1 \| R 2$ should be at least $10 R_{\text {src }}$ to lower $I R$ drop across $R_{\text {src }}$.
- Current through R1 and R2 should be at least $10 I_{b}$.
- AHHHHHH!!!!

Biasing the BJT

- Here is general procedure for our simple amplifier circuits. It still requires some fiddling around. But, fiddling around gives insight.
- This procedure makes some simplifications, maintains stability (DC primarily) and gives pretty accurate results.
- Suppose we want a single-stage BJT amplifier with the following parameters:
- $V_{c c}=10 \mathrm{~V}$, Gain $=20, I_{c c}<20 \mathrm{~mA}$
- First we choose a suitable transistor:

Biasing the BJT

- There are literally hundreds of transistors that could work.
- The short list would include the 2N2222, 2N3904, 2N4401.
- These are all cheap, easily obtainable transistors. They could be considered the "cockroaches" of the BJT transistor family tree. They will be around when all the others have disappeared.
- For this example we will look at the 2N4401. The important parameters are: $V_{c e o}, \beta, I_{c}$, and $V_{b e}$ which is about 0.6 V at the current levels we are interested in.

Biasing the BJT

- Let's first take a look at the maximum ratings. These are values you want to stay away from.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector - Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	40	Vdc
Collector - Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter - Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	6.0	Vdc
Collector Current - Continuous	I_{C}	600	mAdc
Total Device Dissipation $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	625	mW
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$			
Total Device Dissipation @ Derate above $25^{\circ} \mathrm{C}$		5.0	$\mathrm{P}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\text {eJA }}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\text {eJc }}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Biasing the BJT

- What's important here? Does this apply to our application?
- You have to carefully read datasheets and think about what they are telling you, what they are not, and what to carefully infer.
- You must pay close attention to the conditions for each specification.

ON CHARACTERISTICS (Note 1)

DC Current Gain	$\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\left(I_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\left(l_{C}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\left(\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$ $\left(\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=2.0 \mathrm{Vdc}\right.$)	$h_{\text {FE }}$	$\begin{gathered} 20 \\ 40 \\ 80 \\ 100 \\ 40 \end{gathered}$	$\begin{gathered} - \\ \overline{-} \\ \overline{0} \end{gathered}$	-
Collector-Emitter Saturation Voltage	$\left(\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}\right)$ $\left(I_{C}=500 \mathrm{mAdc}, I_{\mathrm{B}}=50 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	$\begin{gathered} 0.4 \\ 0.75 \end{gathered}$	Vdc
Base-Emitter Saturation Voltage	($I_{C}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=15 \mathrm{mAdc}$) $\left(I_{C}=500 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	0.75	$\begin{gathered} \hline 0.95 \\ 1.2 \end{gathered}$	Vdc

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Biasing the BJT

- Now, what's this telling us? What's important, what's not?
- Now we see what Note 1 tells us. Did you miss that before?

SMALL-SIGNAL CHARACTERISTICS

Current-Gain - Bandwidth Product	$\left(\mathrm{l}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right.$)	f_{T}	250	-	MHz
Collector-Base Capacitance	$\left(\mathrm{V}_{C B}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	6.5	pF
Emitter-Base Capacitance	$\left(\mathrm{VEB}_{\text {E }}=0.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {eb }}$	-	30	pF
Input Impedance	$\left(\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{\text {ie }}$	1.0	15	k Ω
Voltage Feedback Ratio	$\left(\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{hre}_{\text {re }}$	0.1	8.0	$\times 10^{-4}$
Small-Signal Current Gain	$\left(\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{\text {fe }}$	40	500	-
Output Admittance	$\left(\mathrm{l}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{kHz}\right.$)	$\mathrm{h}_{0 \text { e }}$	1.0	30	$\mu \mathrm{mhos}$

SWITCHING CHARACTERISTICS
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Delay Time } & \left(\mathrm{V}_{\mathrm{CC}}=30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=2.0 \mathrm{Vdc},\right. \\ \left.\mathrm{I}_{\mathrm{C}}=150 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{mAdc}\right)\end{array}\right)$

1. Pulse Test: Pulse Width ≤ 300 us. Dutv Cvcle $\leq 2.0 \%$.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Biasing the BJT

- Let's look at the small signal current gain, $h_{f e}$. We can usually call this β.
- This tells us where we should set our transistor I_{c}.
- We want $\beta>100$ to make our approximations work.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Biasing the BJT

- This graph tells how $h_{f e}$ changes with I_{c} and temperature.
- Just something to keep in mind.

From: https://www.onsemi.com/pdf/datasheet/2n4401-d.pdf

Biasing the BJT

- From the datasheet, the following can be chosen as starting points:
- $I_{c}=5 \mathrm{~mA}$, as $\beta \geq 100$, power dissipation and I_{c} is not exceeded.
- We will choose a circuit topology as shown below:

Biasing the BJT

- For maximum dynamic range, we choose a quiescent $V_{c}=5 \mathrm{~V}$. So, $R 4=\frac{\frac{V_{c c}}{I_{c c}}}{l_{c c}}=\frac{5}{.005}=1000$ ohms
- Now, to minimize I_{c} variations due to temperature changing $V_{b e}$ we want $R_{e} I_{e}>10 V_{t}$ where V_{t} is the thermal voltage or 26 mV at 300deg C.
- Let's shoot for a V_{e} of 0.5 V .
- If we make the assumption that β exceeds $100, I_{c} \approx I_{e}$, so: $R 3=\frac{V_{e}}{I_{e}}=\frac{0.5}{.005}=100$ ohms.
- Note the gain is roughly equal to $\frac{R 4}{R 3}=10$. We will fix that later, wink, wink.

Biasing the BJT

- Since we know V_{e}, we also know V_{b} and can solve for R1 and R2. $V_{b}=V_{e}+V_{E}=1.1 \mathrm{~V}$
- R1 and R2 can be solved for with Matlab or by hand.
- We want the current through the R1/R2 voltage divider $\approx 0.1 /_{e}$.
- This ensures that variations in I_{b} will not alter V_{b}. The voltage divider also reduces the variation in V_{b} with changes in $V_{c c}$.

Biasing the BJT

- Solving for R1, R2. First the voltage divider relation:

$$
\begin{aligned}
V_{b} & =V_{c c}\left(\frac{R 2}{R 1+R 2}\right) \\
1.1 & =10\left(\frac{R 2}{R 1+R 2}\right)
\end{aligned}
$$

and so,

$$
\begin{aligned}
& R 2=.11(R 1+R 2) \\
& R 1=8.1 R 2
\end{aligned}
$$

Biasing the BJT

- Now keeping in mind that we want the current through the R1/R2 voltage divider $\approx 0.1 l_{e}$ we can say:

$$
\begin{aligned}
\frac{V_{c c}}{R 1+R 2} & =0.1\left(l_{e}\right)(\text { neglicting } l b) \\
\frac{10}{R 1+R 2} & =0.1(.005) \\
\frac{10}{8.1 R 2+R 2} & =.0005 \\
10 & =.0005(9.1 R 2) \\
R 2 & =2197 \text { ohms }, \text { and } \\
R 1 & =17795 \text { ohms }
\end{aligned}
$$

- In the implementation, we would use $\mathrm{R} 1=18 \mathrm{~K}$ and $\mathrm{R} 2=2.2 \mathrm{~K}$ ohms.

Biasing the BJT

- Our circuit (DC only) looks like this:

- Now, its time to simulate! And not a minute sooner.

Biasing the BJT


```
.title dcopt1.sp
* determine dc operating point of transistor
.include 2n4401.mod
\begin{tabular}{llll} 
Vcc & VCc & gnd & 10 V \\
R1 & Vcc & base & 18 K \\
R2 & base & gnd & 2.2 K \\
R3 & emitter & gnd & 100 \\
R4 & Vcc & collector & 1 K \\
Q1 & collector & base & emitter \\
& & \(2 n 4401\)
\end{tabular}
.control
        op
    DC operating point analysis
    print v(base) v(emitter) v(collector) ; print DC voltages
    endc
    . end
*results
*Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
*v(base) = 1.041303e+00
*v(emitter) = 3.774958e-01
*v(collector) = 6.249428e+00
```

- Our currents/voltages are a little bit off: V_{b} low, I_{e} low, V_{c} high

Biasing the BJT

- Let's try fiddling a bit. Lowering R1 a bit should help all three parameters.
- We will try 15 K instead of 18 K . This raises V_{b}, V_{e} and lowers V_{c}.


```
.title dcopt2.sp
*determine dc operating point, fiddle #1
.include 2n4401.mod
\begin{tabular}{llll} 
VCc & VCc & gnd & 10 V \\
R1 & vcc & base & 15 K \\
R2 & base & gnd & 2.2 K \\
R3 & emitter & gnd & 100 \\
R4 & vcc & collector & \\
Q1 & collector & base & emitter \\
& & & 2 K 4401
\end{tabular}
.control
    op
; DC operating point analysis
    print v(base) v(emitter) v(collector) ; print DC voltages
    endc
    end
*Doing analysis at TEMP = 27.000000 and TNOM = 27.000000
*v(base) = 1.215030e+00
*v(emitter) = 5.411213e-01
*v(collector) = 4.622165e+00
```

- Are we good or what?!

