Diode Models

- Depending upon the diode application, different models can be used. The simplest model is the ideal diode which looks like this.

- In this model, if $V_{d}>0$, the diode acts as a zero resistance wire.
- This model does find purpose as an idiot diode. An idiot diode is put in series with the power connections to protect circuitry from reverse polarity.

Diode Models

- A slightly more accurate diode mode is the piece-wise linear model.
- This model accounts for the forward voltage drop across the diode plus an equivalent resistance R_{d} equal to $\frac{\Delta V_{d}}{\Delta I_{d}}$, also known as the static diode resistance.

- The schematic for this model would look like this:

Diode Models

- A much more accurate model is a mathematical expression that has its origin from the physics point of view. This model is given by: $I_{d}=I_{s}\left(e^{\frac{q V_{d}}{n k T}}-1\right)$; where:

$$
\begin{array}{lr}
n=1.65 & \text { ideality factor varies with the diode } \\
I_{s}=5 * 10^{-9} & \text { reverse saturation current } \\
q=1.602 * 10^{-19} & \text { charge on an electron } \\
K=1.38 * 10^{-23} & \text { Boltzmann's constant } \\
T=300 & \text { absolute temperature }
\end{array}
$$

- k, T and q are constants, so $\left(\frac{k T}{q}\right)$ is equal to ${ }^{\sim} 26 \mathrm{mV}$ at 300 K , so the equation can be written as: $I_{d}=I_{s}\left(e^{\frac{V_{d}}{n V_{T}}}-1\right)$; where V_{T} is called the thermal voltage.
- I_{s} is on the order of 10^{-9}, so it can be ignored relative to the exponential term, yielding: $I_{d}=I_{s}\left(e^{\frac{V_{d}}{n V_{T}}}\right)$

Diode Models

- Using the mathematical model and data for a 1N4148 silicon diode, a Matlab plot of its IV characteristics looks like this:

Diode Models

- Looking at the previous plot, we see a point with a given slope on the curve.
- The slope of the tangent line represents the dynamic resistance r_{d} of the diode.

Diode Models

- The slope of the tangent line r_{d} is obtained by differentiation of the diode equation.

$$
\begin{aligned}
I_{d} & =I_{s}\left(e^{\frac{V_{d}}{V_{T}}}\right) \quad \text { now, differentiate diode equation WRT } V_{D} \\
\frac{d I_{d}}{d V_{d}} & =I_{s} \frac{d}{d V_{d}}\left(e^{\frac{V_{d}}{n V_{T}}}\right) \quad \text { remembering: } \frac{d}{d x} a e^{a x}=a e^{a x} \\
\frac{d I_{d}}{d V_{d}} & =\frac{I_{s}}{n V_{T}}\left(e^{\frac{V_{d}}{n V_{T}}}\right) \quad \text { now, substitute } I_{s}\left(e^{\frac{V_{d}}{n V_{T}}}\right) \text { for } I_{d} \text { from first equation } \\
\frac{d I_{d}}{d V_{d}} & =\frac{I_{d}}{n V_{T}} \quad \text { now, invert both sides to obtain a resistance } \frac{V}{l} \\
\frac{d V_{d}}{d I_{d}} & =\frac{n V_{T}}{I_{d}} \quad \text { if } \mathrm{n}=1, n V_{t}=26 m V \text {, so since } \\
\frac{d V_{d}}{d I_{d}} & =r_{d} \quad \text { then... } \\
r_{d} & =\frac{26 m V}{I_{d}}
\end{aligned}
$$

Diode Models

- r_{d} is the model of the diode in the small signal condition. Its just a resistance with no voltage source.

- The small signal diode resistance only applies for the condition where we are well beyond the barrier voltage 0.6 V of the diode. Why?
- When $V_{d}<0 V$, the equation does not hold since we removed the I_{s} term.
- Before we are a little past the threshold voltage, the exponential term will not dominate I_{s}.
- A small signal condition is one where our signal amplitude is a small value in comparison with the other circuit voltages or currents.
- For example, a 100 mV pp AC signal is a small signal with an amplifier that operates from 10 V .

