Final Exam Review

- \(\Gamma_L \), load voltage reflection coefficient
 - definition: \(\Gamma_L = \frac{V_0^-}{V_0^+} \)
 - also known by: \(\Gamma_L = \frac{(Z_L - Z_0)}{(Z_L + Z_0)} \)
 (Magnitude and phase angle of load reflection function of only \(Z_0 \) and \(Z_L \), just like before.)
 - in polar form: \(\Gamma_L = |\Gamma_L| e^{j\Theta_L} \); where \(|\Gamma_L| = \sqrt{r_e^2 + i m^2} \) and \(\Theta_L = \arctan\left(\frac{im}{r_e}\right) \)
 - we also see that: \(Z_L = Z_0 \left[\frac{(1 + \Gamma_L)}{(1 - \Gamma_L)}\right] \)

- Reflections from short, open and \(Z_0 \) terminated lines
 - Repetition period for standing waves is \(\lambda/2 \)
 - Voltage maximums coincide with current minimums
 - Voltage and current maximums and minimums are \(\lambda/4 \) apart
 - The standing wave does not move. Points of \(V_{\text{max}} \) and \(V_{\text{min}} \) are fixed.
 - \(|\Gamma_L| \) is 1 for short and open, 0 for \(Z_0 \) terminated lines
 - \(SWR = \frac{|V_{\text{max}}|}{|V_{\text{min}}|} = \frac{V^+(1 + |\Gamma_L|)}{V^+(1 - |\Gamma_L|)} \); ratio of min to max voltages on line
 - \(SWR \) varies from 1 to \(\infty \); \(SWR = 1 \) indicates maximum power transfer
 - An \(SWR \) of infinity indicates a completely reactive, shorted or open load, \(|\Gamma_L| = 1 \)
 - It then follows that: \(\Gamma_L = \frac{SWR - 1}{SWR + 1} \)

- Distances from load to voltage (or current) minimum and maximums \(z'_{\text{min}} \), \(z'_{\text{max}} \)
 - Voltage maximums are found: \(\beta z'_{\text{max}} = \frac{\Theta_L}{2} = n\pi \); \(n = 0, 1, 2... \)
 - Voltage minimums are found: \(\beta z'_{\text{min}} = \frac{\Theta_L}{2} = \frac{\pi}{2} + n\pi \); \(n = 0, 1, 2... \)
 - Observations
 * We find that the standing wave is offset (in \(z' \)) from the load by \(\frac{\Theta_L}{2} \);
 * For inductive loads, the voltage is rising as you move away from the load
 * For capacitive loads, the voltage is falling as you move away from the load
 * If \(z' \) comes out negative (beyond load), simply come out \(\lambda/2 \) back onto the line
Input impedance of open and short circuited lines

- Lossless: \(Z_{in}(z') = Z_0 \left[\frac{Z_L + jZ_0 \tan(\beta z')}{Z_0 + jZ_L \tan(\beta z')} \right] \)

- Lossy: \(Z_{in}(z') = Z_0 \left[\frac{Z_L + Z_0 \tanh(\gamma z')}{Z_0 + Z_L \tanh(\gamma z')} \right] \)

- \(Z_{in} \) is always totally reactive except at resonance \(\frac{\lambda}{4} \) or \(\frac{\lambda}{2} \)

- \(Z_{in} = Z_0 j \tan(\beta z') \implies \) Short circuited line

- \(Z_{in} = -Z_0 j \cot(\beta z') \implies \) Open circuited line

- Inductive reactance: \(X_L = 2\pi f L \)

- Capacitive reactance: \(X_C = \frac{1}{2\pi f C} \)

- Observations
 * Very short shorted lines look like inductors
 * Very short open lines look like capacitors

Smith Chart

- Prime center is totally resistive and equal to system impedance or admittance
- Middle horizontal line is the real (resistive) axis, no reactance
- Outer circle is totally reactive, no resistive component
- Impedance: Inductor upper half \((+j)\), Capacitor lower half \((-j)\), S.C. left, O.C. right
- Admittance: Capacitor upper half \((+j)\), Inductor lower half \((-j)\), O.C. left, S.C. right
• Stub matching
 - Normalize impedance or admittance
 - Rotate towards generator on constant Γ circle to intersect with $R = 1$ or $G = 1$ circle
 - Here, $R = Z_0$ or $G = G_0$...but any reactance/susceptance still must be canceled
 - Cancellation is made with a $\pm X$ or $\pm B$
 - Cancellation can be done with either lumped element or transmission line
 - Tline used for cancellation can be at multiple locations
 - Tline used for cancellation can be either open or shorted at its end
 - Tline used for cancellation can be connected as series or shunt element

• Series Matching Stub
 - Use impedance chart
 - Find reactance that needs cancellation at the point where $R = Z_0$
 - Starting from S.C. (left) or O.C. (right), rotate towards generator till required reactance is reached on the outer circle (pure reactance).
 - Note rotation required in λ. This is your stub length.

• Shunt Matching Stub
 - Use admittance chart
 - Find susceptance that needs cancellation at the point where $G = Y_0$
 - Starting from S.C. (right) or O.C. (left), rotate towards generator till required susceptance is reached on the outer circle (pure susceptance).
 - Note rotation required in λ. This is your stub length.

• $\frac{\lambda}{4}$ line matching
 - Narrow bandwidths can be a problem, but multiple, stepped transformations can help
 - Can transform real resistances only with $Z_m = \sqrt{(Z_{in} \ast Z_{out})}$
 - Can be used in conjunction with a proper length of line to transform complex impedance
 * Using impedance chart, normalize load impedance
 * Rotate towards generator on constant Γ circle to intersect with the axis of reals
 * Note distance in λ. This is the distance to the $\frac{\lambda}{4}$ line
 * Attach $\frac{\lambda}{4}$ line of impedance $Z_m = \sqrt{(Z_{in} \ast Z_{out})}$ to this point
 * Connect system impedance line from other end of $\frac{\lambda}{4}$ to generator