1. A short circuit is needed at point A at 461 MHz. Can do this with \(\frac{\lambda}{4} \) or lumped resonant circuit.

 a) \(\frac{\lambda}{4} \) element at (A): need \(\lambda \), \(\lambda = \frac{V_p}{f} \), \(V_p = \frac{c}{V}r \) = \(1.98 \times 10^8 \text{ m/s} \)

 \[\lambda = \frac{1.98 \times 10^8 \text{ m/s}}{461 \frac{\lambda}{4}} \]

 \[\frac{\lambda}{4} = 0.1073 \text{ m} \]

 \[\frac{\lambda}{2} = 0.2145 \text{ m} \]

 \(\frac{\lambda}{4} \) line input looks like short circuit when far end is open circuit.

 \(\frac{\lambda}{2} \) line input looks like short circuit when far end is shorted.

 ![Diagram of \(\frac{\lambda}{4} \) and \(\frac{\lambda}{2} \) elements.]

 b) Need a short circuit to ground, a series resonant circuit exhibits zero impedance at resonance.

 \[f_0 = \frac{1}{2\pi \sqrt{LC}} \]

 \[461 \times 10^6 = \frac{1}{2\pi \sqrt{10^{-12} \times L}} \]

 \[2.897 \times 10^9 = \frac{1}{\sqrt{10^{-12} \times L}} \]

 \[L = 11.9 \text{ nH} \]