2. Consider the circuit below:

\[V_0 = 2.75 \text{ V}, \quad t_d = 2\text{nS} \]
\[R = 400\text{ n}
\[L = 113\Omega \]
\[1\mu F (v=110) \]

a) On the graph below, plot \(V_0 \) for \(t = 0 \) to \(t = 10\text{nS} \). Clearly label voltages.
b) Indicate on your plot the voltage and time at:
 1) \(t = 4\text{nS} \)
 11) \(t = 3\text{nS} \)

Hint: Note that \(V_0 \) is not the voltage across the inductor but across both inductor and resistor. So, \(V_0 = V_L + V_R \).

- Equivalent circuit:
 \[V_0 = \frac{1}{113} \cdot \frac{3}{2} \times 110 \text{ V} = \frac{420}{113} \text{ V} = 3.7\text{ V} \]

- Final voltage at \(V_0 \) is a voltage divider, \(\left(\frac{1}{113} \right) 1 = 0.601\text{ V} \)

- Waveform will occur circuit at the inductor, have full-sized positive reflection followed by decay as current builds in the inductor.

\(V_0 = V_L + I_L R_L \); \(V_0 \) is found using

\[V_0(t) = \left[V_0(\infty) + V_0(t_{d}) - V_0(\infty) \right] e^{-(t-t_d)/\tau} + V(t+t_d) \]

with \(t > t_d \)

\[V_0(t) = 0.601 + \left[0.601 - 0.601 e^{-(t-4)/\tau} \right] \]

\(e^{t} = 4 \quad V_0(t) = 0.601 + 0.399 e^{3} \)

\(e^{3} = 27 \quad V_0(t) = 0.601 + 0.399 e^{-3} \)