14. (a) When the switch closes the cap must supply all the current to the R-line until the current stops flowing. This time will be $2 \times t_d$. The current will be \[I_{dc} = \frac{V_{dd}}{R_t + Z_0} = \frac{3.3}{100} = 0.033 \text{ A} \]

\[i_c = C \frac{dV}{dt} \]

\[0.033 = C \frac{100 \text{ mV}}{4 \times 10^3} \]

\[C = 1.32 \text{nF or } 1.32 \text{pF} \]

(b) Yes. The time during which current must be supplied is twice as long. It would need to be 2.64pF.

With the parallel termination, the instantaneous current required will double.

\[I = \frac{V_{dd}}{Z_0} = \frac{3.3}{50} = 0.066 \text{A} \]

With the original $2k\Omega$ line a 2640pF decoupling cap resistor would be needed.