8. The Schmitt trigger circuit:

\[\text{Vin} \rightarrow M \rightarrow \text{Vout} \]

Since the output resistance of the buffer is 700 ohms and its input resistance is roughly \(\infty \), it's obvious that the 5kΩ input constraint is met when \(R_1 + R_2 = 5000 \).

In the condition where the output is 3.3V and the input voltage has just reached the lower threshold, we have:

\[\text{Vin} \rightarrow M \rightarrow 1.65V \rightarrow 4V \]

By superposition:

\[\text{Vin}' = \frac{R_2}{R_1 + R_2} \text{Vin} + \frac{R_1}{R_1 + R_2} \text{Vout} \]

With the constraint of \(R_1 + R_2 = 5000 \) and the given thresholds, for the case where the input has fallen to the lower threshold we have:

\[1.65 = \left(\frac{R_2}{5000} \right) 1.25 + \left(\frac{R_1}{5000} \right) 3.3 \]

(\(R_2 = 4020 \Omega \))

8250 = 1.25R_2 + 3.3\(R_1 \)

In the other case where the input has just risen to the upper threshold:

\[1.65 = \frac{R_2}{5000} (2.05) + 0 \]

thus \(R_2 = 4020 \Omega \)

Solving for \(R_1 \) using (1):

8250 = 1.25(4020) + 3.3\(R_1 \)

\[\frac{R_1}{9.77} \]

Our circuit is thus:

\[\text{Vin} \rightarrow M \rightarrow 4020 \rightarrow 9.77 \rightarrow \text{Vout} \]