Termination Strategies

- **Source [Series] Termination**
 \[R_t = R_{out} - Z_0 \]
 - Only one extra component
 - Adds no DC load
 - Lower instantaneous current requirements
 - Less cross talk induced

- **Parallel [Load and J] Termination**
 \[R_t = Z_0 \]
 - Slower edge rate due to DC loading
 - Can terminate to Vcc or Vss (flexibility)
 - Can be used with open drain drivers
 - \(R_t \) is easy to determine (only \(Z_0 \) dependent)
 - Only one component
 - DC power is dissipated in \(R_t \)
 - Needs decoupling if terminating to Vcc

- **Thevenin Termination**
 \[R_{t1} || R_{t2} = Z_0 \]
 - Less DC load than simple parallel termination
 - Must take care with DC levels to avoid
 linear operation of CMOS receivers (tri-state bus)
 - \(R_t + R_{t2} \) can be chosen to "help"
 unbalanced \(R_{out} \) output buffers
 - Slower edge rate due to DC load
 - Usually seen on older TTL ckt's
Termination Strategies

- AC termination

A number of equations exist for determining C_t. These form a good starting point only. Basically, select C_t big enough to terminate the edge. Typical values are $\times 50 - 100 \mu F$.

$R_t = Z_0$

+ Behaves much like parallel method
+ R_t chosen $= Z_0$
+ C_t can be difficult to optimise
+ No DC power dissipation
+ Full noise margins available
+ Can lead to timing problems
+ Good for clock signals
- Data pattern dependent delays

- Diode Termination

V_{DD}

Z_0

\hat{X}

Schottky diodes

+ Don't need to know Z_0
+ Diodes can be placed anywhere reflections are present.
+ Need to use fast, low Vf diodes
+ Not really a matching or termination strategy