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6.1. INTRODUCTION

A transmission line is an electromagnetic guiding system for efficient point-to-point
transmission of electric signals (information) and power. Since its earliest use in telegraphy
by Samual Morse in the 1830s, transmission lines have been employed in various types of
electrical systems covering a wide range of frequencies and applications. Examples of
common transmission-line applications include TV cables, antenna feed lines, telephone
cables, computer network cables, printed circuit boards, and power lines. A transmission
line generally consists of two or more conductors embedded in a system of dielectric
media. Figure 6.1 shows several examples of commonly used types of transmission lines
composed of a set of parallel conductors.

The coaxial cable (Fig. 6.1a) consists of two concentric cylindrical conductors
separated by a dielectric material, which is either air or an inert gas and spacers, or a foam-
filler material such as polyethylene. Owing to their self-shielding property, coaxial cables
are widely used throughout the radio frequency (RF) spectrum and in the microwave
frequency range. Typical applications of coaxial cables include antenna feed lines, RF
signal distribution networks (e.g., cable TV), interconnections between RF electronic
equipment, as well as input cables to high-frequency precision measurement equipment
such as oscilloscopes, spectrum analyzers, and network analyzers.

Another commonly used transmission-line type is the two-wire line illustrated in
Fig. 6.1b. Typical examples of two-wire lines include overhead power and telephone lines
and the flat twin-lead line as an inexpensive antenna lead-in line. Because the two-wire line
is an open transmission-line structure, it is susceptible to electromagnetic interference. To
reduce electromagnetic interference, the wires may be periodically twisted (twisted pair)
and/or shielded. As a result, unshielded twisted pair (UTP) cables, for example, have
become one of the most commonly used types of cable for high-speed local area networks
inside buildings.

Figure 6.1c—¢ shows several examples of the important class of planar-type
transmission lines. These types of transmission lines are used, for -€xample, in printed
circuit boards to interconnect components, as interconnects in electronic packaging, and
as interconnects in integrated RF and microwave circuits on ceramic or semiconducting
substrates. The microstrip illustrated in Fig. 6.1c consists of a conducting strip and a
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Figure 6.1 Examples of commonly used transmission lines: (a) coaxial cable, (b) two-wire line,
(c) microstrip, (d) coplanar stripline, (€) coplanar waveguide.

conducting plane (ground plane) separated by a dielectric substrate. It is a widely used
planar transmission line mainly because of its ease of fabrication and integration with
devices and components. To connect a shunt component, however, through-holes are
needed to provide access to the ground plane. On the other hand, in the coplanar stripline
and coplanar waveguide (CPW) transmission lines (Fig. 6.1d and e) the conducting signal
and ground strips are on the same side of the substrate. The single-sided conductor
configuration eliminates the need for through-holes and is preferable for making
connections to surface-mounted components.

In addition to their primary function as guiding system for signal and power
transmission, another important application of transmission lines is to realize capacitive
and inductive circuit elements, in particular at microwave frequencies ranging from a few
gigahertz to tens of gigahertz. At these frequencies, lumped reactive elements become
exceedingly small and difficult to realize and fabricate. On the other hand, transmission-
line sections of appropriate lengths on the order of a quarter wavelength can be
easily realized and integrated in planar transmission-line technology. Furthermore,
transmission-line circuits are used in various configurations for impedance matching. The
concept of functional transmission-line elements is further extended to realize a range of
microwave passive components in planar transmission-line technology such as filters,
couplers and power dividers [1].

This chapter on transmission lines provides a summary of the fundamental
transmission-line theory and gives representative examples of important engineering
applications. The following sections summarize the fundamental mathematical
transmission-line equations and associated concepts, review the basic characteristics of
transmission lines, present the transient response due to a step voltage or voltage pulse
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as well as the sinusoidal steady-state response of transmission lines, and give practical
application examples and solution techniques. The chapter concludes with a brief
summary of more advanced transmission-line concepts and gives a brief discussion of
current technological developments and future directions.

6.2. BASIC TRANSMISSION-LINE CHARACTERISTICS

A transmission line is inherently a distributed system that supports propagating
electromagnetic waves for signal transmission. One of the main characteristics of a
transmission line is the delayed-time response due to the finite wave velocity.

The transmission characteristics of a transmission line can be rigorously determined
by solving Maxwell’s equations for the corresponding electromagnetic problem. For an
“ideal” transmission line consisting of two parallel perfect conductors embedded in a
homogeneous dielectric medium, the fundamental transmission mode is a transverse
electromagnetic (TEM) wave, which is similar to a plane electromagnetic wave described
in the previous chapter [2]. The electromagnetic field formulation for TEM waves on a
transmission line can be converted to corresponding voltage and current circuit quantities
by integrating the electric field between the conductors and the magnetic field around a
conductor in a given plane transverse to the direction of wave propagation [3,4].

Alternatively, the transmission-line characteristics may be obtained by considering
the transmission line directly as a distributed-parameter circuit in an extension of the
traditional circuit theory [5]. The distributed circuit parameters, however, need to be
determined from electromagnetic field theory. The distributed-circuit approach is followed
in this chapter.

6.2.1. Transmission-line Parameters

A transmission- line may be described in terms of the following distributed-circuit
parameters, also called line parameters: the inductance parameter L (in H/m), which
represents the series (loop) inductance per unit length of line, and the capacitance
parameter C (in F/m), which is the shunt capacitance per unit length between the two
conductors. To represent line losses, the resistance parameter R (in $/m) is defined for the
series resistance per unit length due to the finite conductivity of both conductors, while the
conductance parameter G (in S/m) gives the shunt conductance per unit length of line due
to dielectric loss in the material surrounding the conductors.

The R, L, G, C transmission-line parameters can be derived in terms of the electric
and magnetic field quantities by relating the corresponding stored energy and dissipated
power. The resulting relationships are [1,2]

" .
=WLH-H ds 6.1)
€ .
=R J H.H'd 6.3)
TP
, : |
- KW“I‘ZLB J E.Eds (6.4)
S




188 Weisshaar

where E and H are the electric and magnetic field vectors in phasor form, “*” denotes
complex conjugate operation, R, is the surface resistance of the conductors,’ € is the
permittivity and tand is the loss tangent of the dielectric material surrounding the
conductors, and the line integration in Eq. (6.3) is along the contours enclosing the two
conductor surfaces.

In general, the line parameters of a lossy transmission line are frequency dependent
owing to the skin effect in the conductors and loss tangent of the dielectric medium.* In the
following, a lossless transmission line having constant L and C and zero R and G
parameters is considered. This model represents a good first-order approximation for
many practical transmission-line problems. The characteristics of lossy transmission lines
are discussed in Sec. 6.4.

6.2.2. Transmission-line Equations for Lossless Lines

The fundamental equations that govern wave propagation on a lossless transmission line
can be derived from an equivalent circuit representation for a short section of transmission
line of length Az illustrated in Fig. 6.2. A mathematically more rigorous derivation of the
transmission-line equations is given in Ref. 5.

By considering the voltage drop across the series inductance LAz and current
through the shunt capacitance CAz, and taking Az — 0, the following fundamental
transmission-line equations (also known as telegrapher’s equations) are obtained.

Bv(é, 0 9i(z, 1) '
=— 6.5
0z L ot (6:5)
di(z, 1) Mz, 1)
=-C .
oz ot €.6)
— AZ L

. — -
- el SPE
- -

—=i(z + Dz, t)

v(z,t) ' /r v(z + Az, t)

Figure 6.2 Schematic representation of a two-conductor transmission line and associated
equivalent circuit model for a short section of lossless line.

- -

"For a good conductor the surface resistance is R, = 1/08,, where the skin depth & = 1/\/nfpo
is assumed to be small compared to the cross-sectional dimensions of the conductor.

¥The skin effect describes the nonuniform current distribution inside the conductor caused by the
time-varying magnetic flux within the conductor. As a result the resistance per unit length increases
while the inductance per unit length decreases with increasing frequency. The loss tangent of the
dielectric medium tan § = €”/¢' typically results in an increase in shunt conductance with frequency,
while the change in capacitance is negligible in most practical cases.
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The transmission-line equations, Eqgs. (6.5) and (6.6), can be combined to obtain a one-
dimensional wave equation for voltage

2v(z, £) _L Cazv(z, 1)

972 a2 ©.7

and likewise for current.

6.2.3. General Traveling-wave Solutions for Lossless Lines

The wave equation in Eq. (6.7) has the general solution

Wz, 1) = vt <t — f) v (z + vi) (6.8)
14 i4

where v (¢t — z/v,) corresponds to a wave traveling in the positive z direction, and
v (t+2z/v,) to a wave traveling in the negative z direction with constant velocity of
propagation

1
"= JIe

Figure 6.3 illustrates the progression of a single traveling wave as function of position
along the line and as function of time.

O (e-3)
Up

(6.9)
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Figure 6.3 Illustration of the space and time variation for a general voltage wave vt(t —z/v,):
(a) variation in time and (b) variation in space.
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A corresponding solution for sinusoidal traveling waves is

— _Z + - z -
v(z, £) = vy cos [w(t v,,) +¢ ] + v cos [a)(t+ vp) + ¢ ] 6.10)
= v cos(wt — Bz + ¢) + vy cos(wt + Bz + ¢7)

p=2-= (6.11)

is the phase constant and A = v,/f is the wavelength on the line. Since the spatial phase
change Bz depends on both the physical distance and the wavelength on the line, it is
commonly expressed as electrical distance (or electrical length) 6 with

0= pz= 2n§ (6.12)
The corresponding wave solutions for current associated with voltage ¥(z,?) in

Eq. (6.8) are found with Eq. (6.5) or (6.6) as

(t—z/vp) v (+z/v) - - (6.13)

. vt
i(z,t) = Za Zo

The parameter Z, is defined as the characteristic impedance of the transmission line and
is given in terms of the line parameters by

Zo = \fg | (6.14)

The characteristic impedance Z; specifies the ratio of voltage to current of a single
traveling wave and, in general, is a function of both the conductor configuration
(dimensions) and the electric and magnetic properties of the material surrounding the
conductors. The negative sign in Eq. (6.13) for a wave traveling in the negative z direction
accounts for the definition of positive current in the positive z direction.

As an example, consider the coaxial cable shown in Fig. 6.1a with inner conductor of
diameter d, outer conductor of diameter D, and dielectric medium of dielectric constant e,.
The associated distributed inductance and capacitance parameters are

o, D

== , 1

L ann 5 (6.15)
2mepe,

¢= In(D/d) (6.16)

where uo = 47 x 107 H/m is the free-space permeability and €y ~ 8.854 x 10712 F/m is
the free-space permittivity. The characteristic impedance of the coaxial line is

_[L_1 [@,D_ 60 D
Z°‘\fc‘zn /eoé,lnd_ﬁlnd () (6.17)
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and the velocity of propagation is

1
_t__ . _c (6.18)

where ¢ & 30cm/ns is the velocity of propagation in free space.

In general, the velocity of propagation of a TEM wave on a lossless transmission line
embedded in a homogeneous dielectric medium is independent of the geometry of the line
and depends only on the material properties of the dielectric medium. The velocity of
propagation is reduced from the free-space velocity ¢ by the factor 1/,/€,, which is also
called the velocity factor and is typically given in percent.

For transmission lines with inhomogeneous or mixed diclectrics, such as the
microstrip shown in Fig. 6.1c, the velocity of propagation depends on both the cross-
sectional geometry of the line and the dielectric constants of the dielectric media. In this
case, the electromagnetic wave propagating on the line is not strictly TEM, but for many
practical applications can be approximated as a quasi-TEM wave. To extend Eq. (6.18) to
transmission lines with mixed dielectrics, the inhomogeneous dielectric is replaced with a
homogeneous dielectric of effective dielectric constant e giving the same capacitance per
unit length as the actual structure. The effective dielectric constant is obtained as the ratio
of the actual distributed capacitance C of the line to the capacitance of the same structure
but with all dielectrics replaced with air:

€ott = (6.19)

Cair
The velocity of propagation of the quasi-TEM wave can be expressed with Eq. (6.19) as

1 c
V, = =
P Jiho€oberr  AJeelt

(6.20)

In general, the effective dielectric constant needs to be computed numerically;
however, approximate closed-form expressions are available for many common
transmission-line structures. As an example, a simple approximate closed-form expression
for the effective dielectric constant of a microstrip of width w, substrate height 4, and
dielectric constant ¢, is given by [6]

g+l -1 1

Eeff = +
T2 2 /T +10k/w

(6.21)

Various closed-form approximations of the transmission-line parameters for many
common planar transmission lines have been developed and can be found in the literature
including Refs. 6 and 7. Table 6.1 gives the transmission-line parameters in exact or
approximate closed form for several common types of transmission lines (assuming no
losses).
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Table 64 Transmission-line Parameters for Several Common Types of Transmission

Lines
Transmission line Parameters
o ) _ Ko ]
L =22 In(D/d)
_ 2mege,
B ln(D/ d)
4~ Zo= 271 eoe,ln(D/ 4
Coaxial line . €off = &
€p _ Mo -1
_.,d,.._ L= ?cosh (D/d)
‘ . C = TEYE,
3 H = ——l
) 1 cosh™ (D/d)
| o
- D Zo =1 [H osh-Y(n/d)
Two-wire line Ty €o€r
Eeff = €

&+1 €—1 1

€eff = +
T2 2 /T+10h/w

—_— n<%+i) forw/h<1
Microstrip Zo= Ve Y 4h -
120m for w/h > 1
F Jecsr -
F=w/h+242—0.44h/w + (1 — h/w)°
t—>0  [6]
o d _ 1 o & — DEEDK(E)
Dl €t = 1+ KD
K, = 2= s1nh[7rw/ 4h)]
ki = sinh[rd/(4h)]
Coplanar waveguide =1 — 1 —w/dP
30 K(k’)
T e K(k)
t—>0  [6]

(K (k) is the elliptical integral of the first kind)

6.3. TRANSIENT RESPONSE OF LOSSLESS TRANSMISSION LINES

A practical transmission line is of finite length and is necessarily terminated. Consider a
transmission-line circuit consisting of a section of lossless transmission line that is
connected to a source and terminated in a load, as illustrated in Fig. 6.4. The response of
the transmission-line circuit depends on the transmission-line characteristics as well as the
characteristics of the source and terminating load. The ideal transmission line of finite
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Rs
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vs (t) ZO s3d

e ————0 -

z2=0 z

Figure 6.4 Lossless transmission line with resistive Thévénin equivalent source and resistive
termination.

length is completely specified by the distributed L and C parameters and line length /,
or, equivalently, by its characteristic impedance Z, = ./L/C and delay time

ty=—=IJLC (6.22)

of the line.* The termination imposes voltage and current boundary conditions at the end
of the line, which may give rise to wave reflections.

6.3.1. Reflection Coefficient

When a traveling wave reaches the end of the transmission line, a reflected wave is
generated unless the termination presents a load condition that is equal to the
characteristic impedance of the line. The ratio of reflected voltage to incident voltage at
the termination is defined as voltage reflection coefficient p, which for linear resistive
terminations can be directly expressed in terms of the terminating resistance and the
characteristic impedance of the line. The corresponding current reflection coefficient is
given by —p. For the transmission-line circuit shown in Fig. 6.4 with resistive terminations,
the voltage reflection coefficient at the termination with load resistance R, is

_RL—2Zy

= 2
PL Ry + 7, (6.23)

Similarly, the voltage reflection coefficient at the source end with source resistance Ry is

_Rs—Z

s E—.— 6.24
Ry + 2, (6.24)

Ps

The inverse relationship between reflection coefficient oy and load resistance Ry, follows
directly from Eg. (6.23) and is

1+
1—pr

Ry Zy (6.25)

*The specification in terms of characteristic impedance and delay time is used, for example, in the
standard SPICE model for an ideal transmission line [8].
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It is seen from Eq. (6.23) or (6.24) that the reflection coefficient is positive for a
termination resistance greater than the characteristic impedance, and it is negative for a
termination resistance less than the characteristic impedance of the line. A termination
resistance equal to the characteristic impedance produces no reflection (o = 0) and is called
matched termination. For the special case of an open-circuit termination the voltage
reflection coefficient is p,c = +1, while for a short-circuit termination the voltage reflection
coefficient is psc = —1.

6.3.2. Step Response

To illustrate the wave reflection process, the step-voltage response of an ideal transmission
line connected to a Thévénin equivalent source and terminated in a resistive load, as
shown in Fig. 6.4, is considered. The transient response for a step-voltage change with
finite rise time can be obtained in a similar manner. The step-voltage response of a Jossy
transmission line with constant or frequency-dependent line parameters is more complex
and can be determined using the Laplace transformation [3].

The source voltage vg(f) in the circuit in Fig. 6.4 is assumed to be a step-voltage
given by

v(f) = VoU(D) (6.26)
where
1 fort>0
) = { 0 fort <0 (6.27)

The transient response due to a rectangular pulse vpuse(f) of duration T can be obtained
as the superposition of two step responses given as vpue(t) = VoU(2) — VoU(t — T).

The step-voltage change launches a forward traveling wave at the input of the line at
time t=0. Assuming no initial charge or current on the line, this first wave component
presents a resistive load to the generator that is equal to the characteristic impedance of
the line. The voltage of the first traveling wave component is

Vi (z,f) = V"Fio?o U(t ~ vi) = V1+U(z - vi) (6.28)
14 P

where v, is the velocity of propagation on the line. For a nonzero reflection coefficient o
at the termination, a reflected wave is generated when the first traveling wave arrives at the
termination at time ¢ = t; = I/v,. If the reflection coefficients at both the source and the
termination are nonzero, an infinite succession of reflected waves results. The total voltage
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response on the. line is the superposition of all traveling-wave components and is given by

z
M) = o VO[U<t - v£> " pLU(t 2 +vi)
P P

z z
+ PspLU<l -2ty — v_> + PsPiU<t — 4ty + v_)

zp zp 6.29)
+ pzspiU(t — 4t — —) + pfqpiU(t — 61y +—)
Vp p
‘. ]
Similarly, the total current on the line is given by
Vo z z
i(z, ) = Ult—=) - - -
i(z,1) Rs+Zo [ ( v,,) pL U‘(t 2ts + vp)
+ pspr Ut — 2t - —psp U t——4td+;—
z ? (6.30)

z z
) - piwpiU(t —~6ta+

+ p?gpiU(t L e
Ve »

+}

The reflected wave components on the lossless transmission line are successively delayed
copies of the first traveling-wave component with amplitudes appropriately adjusted by
the reflection coefficients. Equations (6.29) and (6.30) show that at any given time and
location on the line only a finite number of wave components have been generated.
For example, for ¢t = 3¢, three wave components exist at the input of the line (at z=0) and
four wave components exist at the load (at z=1).

Unless both reflection coefficients have unity magnitudes, the amplitudes of the
successive wave components become progressively smaller in magnitude and the infinite
summations in Eqs. (6.29) and (6.30) converge to the dc values for ¢t — oo. The steady-
state (dc) voltage V,, is obtained by summing the amplitudes of all traveling-wave
components for t —» oc.

Z
Voo =¥z, 1 —> 00)=RS£ZO Voll + pr + pspL + pspi + p505 + -}
2y, 1o (6.31)

“Rs+2Zo °1-psorL

The steady-state voltage can also be directly obtained as the dc voltage drop across the
load after removing the lossless line, that is

Ry
Voo =—————V 6.32
o0 RS + RL 0 ( )
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The steady-state current is

Vo

I =———
*© Rs+ Ry

(6.33)

6.3.3. Lattice Diagram

The lattice diagram (also called bounce or reflection diagram) provides a convenient
graphical means for keeping track of the multiple wave reflections on the line. The general
lattice diagram is illustrated in Fig. 6.5. Each wave component is represented by a sloped
line segment that shows the time elapsed after the initial voltage change at the source as a
function of distance z on the line. For bookkeeping purposes, the value of the voltage
amplitude of each wave component is commonly written above the corresponding line
segment and the value of the accompanying current is added below. Starting with voltage
Vi = VoZo/(Rs + Zy) of the first wave component, the voltage amplitude of each
successive wave is obtained from the voltage of the preceding wave by multiplication with
the appropriate reflection coefficient p; or pgs in accordance with Eq. (6.29). Successive
current values are obtained by multiplication with —p, or —pg, as shown in Eq. (6.30).
The lattice diagram may be conveniently used to determine the voltage and current
distributions along the transmission line at any given time or to find the time response at
any given position. The variation of voltage and current as a function of time at a given
position z =z, is found from the intersection of the vertical line through z; and the
sloped line segments representing the wave components. Figure 6.5 shows the first five
wave intersection times at position z; marked as ty, ,, 13, t4, and ts, respectively. At each

Rs \ \
] I
t |
vs(t) : Zo,ta : Ry
5 s
] 1
< Ps Pr > !
0 0 21 t )
o .. T T
tr 1 IG+ : %
1 1
ta T : IG+/Z;J 1
t + |
| val 1
———— + ’Zo !
2™ oot :
22 i 1 LPsp I/;+ :
- L el }
T 1
4 | 2 V'\‘ ]
1 pgfL'y t
ty [ o ' * |Zo '
st N |
5 \ - 2303 v+ :
t
X P53+ !
£ 1/2, !
5td : N V+ 0 !
1 psPLYL
: X [ Zo !
e} TaAn |

Figure 6.5 Lattice diagram for a lossless transmission line with unmatched terminations.
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= 2,8)/V;
v(z=2,1)/Vo (L-+ pz -+ pspu + posd, + ARG =218/243V,

L5r
I 5 (1+ pr + pspr)Vit = 26/2TVp
(1 +p)Vi" =10/9%%
1} Voo l
W =2/3V,
0.5F (14 pr.+ pspr + psp})Vit = T0/81V4
0 1 1 1 : 1 1 L ! M L 1
o fos 1 151 2 f2a5 3 35] 4 a5 s
(a) ti=1/484 ta =T[4ty ts =9[4ty to=15/4ts t5=17/4t; tfty
(2 = 21,8)/(Vo/ Zo)
1 081
I = 3/3Vo/ %
0.6k (1 - pr.+ pspr — psol + perl )T = 50/243Ve/ 20
' (1= po + pspL — pspi )T = 14/81Vo/Zs
0.4k (1 = pr + pspr)If = 2/2TVo/Zs
a ; P = 10/9%:/Z
o2k o hommpns [SNISUS I
0 L 1 . L . i |
0 1 P2 | 3 [ a ] _f.
(b) Hh= 1/4t¢ ts = 7/4t¢ ty= 9/4t¢ = 15/4t¢ ty = 17/4t¢ t/td

Figure 6.6 Step response of a lossless transmission line at z =z; =1/4 for Rs = Zy/2 and
R, = 5Zy; (a) voltage response, (b) current response.

intersection time, the total voltage and current change by the amplitudes specified for the
intersecting wave component. The corresponding transient response for voltage and
current with Rg = Zy/2 and Ry = 5Z; corresponding to reflection coefficients ps = —1/3
and p; = 2/3, respectively, is shown in Fig. 6.6. The transient response converges to the
steady-state Vo, = 10/11 Vy and I, = 2/11(Vy/Zy), as indicated in Fig. 6.6.

6.3.4. Applications

In many practical applications, one or both ends of a transmission line are matched to
avoid multiple reflections. If the source and/or the receiver do not provide a match,
multiple reflections can be avoided by adding an appropriate resistor at the input of the
line (source termination) or at the end of the line (end termination) [9,10]. Multiple
reflections on the line may lead to signal distortion including a slow voltage buildup or
signal overshoot and ringing.




198 Weisshaar

50% threshold

0 5 10 15 20 25 30
t/ tq

Figure 6.7 Step-voltage response at the termination of an open-circuited lossless transmission
line with Rg = 5Z; (ps = 2/3).

Over- and Under-driven Transmission Lines

In high-speed digital systems, the input of a receiver circuit typically presents a load to a
transmission line that is approximately an open circuit (unterminated). The step-voltage
response of an unterminated transmission line may exhibit a considerably different
behavior depending on the source resistance.

If the source resistance is larger than the characteristic impedance of the line, the
voltage across the load will build up monotonically to its final value since both reflection
coefficients are positive. This condition is referred to as an underdriven transmission
line. The buildup time to reach a sufficiently converged voltage may correspond to
many round-trip times if the reflection coefficient at the source is close to +1
(and pr = poc = +1), as illustrated in Fig. 6.7. As a result, the effective signal delay
may be several times longer than the delay time of the line.

If the source resistance is smaller than the characteristic impedance of the line, the
initial voltage at the unterminated end will exceed the final value (overshoot). Since the
source reflection coefficient is negative and the load reflection coefficient is positive,
the voltage response will exhibit ringing as the voltage converges to its final value. This
condition is referred to as an overdriven transmission line. It may take many round-trip
times to reach a sufficiently converged voltage (long settling time) if the reflection
coefficient at the source is close to —1 (and pr = poc = +1), as illustrated in Fig. 6.8.
An overdriven line can produce excessive noise and cause intersymbol interference.

Transmission-line Junctions

Wave reflections occur also at the junction of two tandem-connected transmission lines
having different characteristic impedances. This situation, illustrated in Fig. 6.9a, is often
encountered in practice. For an incident wave on line 1 with characteristic impedance Zy,1,
the second line with characteristic impedance Z presents a load resistance to line 1 that
is equal to Zg,. At the junction, a reflected wave is generated on line 1 with voltage
reflection coefficient py; given by

_Zya—Zy,

=t 6.34
Zop + Zp, (634

o1
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1.5¢ 7

vr(t)/Vo

0.5F T

0 5 10 15 20 25 30
t/ta

Figure 6.8 Step-voltage response at the termination of an open-circuited lossless transmission line
with Rg = Zy/5 (ps = —2/3).
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Us(t) ( i; Z0,1

(b)

Figure 6.9 Junction between transmission lines: (a) two tandem-connected lines and (b) three
parallel-connected lines.
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In addition, a wave is launched on the second line departing from the junction. The
voltage amplitude of the transmitted wave is the sum of the voltage amplitudes of
the incident and reflected waves on line 1. The ratio of the voltage amplitudes of the
transmitted wave on line 2 to the incident wave on line 1 is defined as the voltage
transmission coefficient p;; and is given by

220,2

B ——— 6.35
Zoy+Zo2 (6.35)

pu=14pu1=

Similarly, for an incident wave from line 2, the reflection coefficient p,; at the junction is

_Zoy—Zop

= = — .36
£22 ZO,I +Zo,2 P11 (6.36)

The voltage transmission coefficient p,, for a wave incident from line 2 and transmitted
into line 1 is

27y,

ikl LN 6.37
Zy1 + Zo (637)

pr2=14ppn=

If in addition lumped elements are connected at the junction or the transmission lines are
connected through a resistive network, the reflection and transmission coefficients will
change, and in general, p; < 1+ pj [S].

For a parallel connection of multiple lines at a common junction, as illustrated in
Fig. 6.9b, the effective load resistance is obtained as the parallel combination of the
characteristic impedances of all lines except for the line carrying the incident wave.
The reflection and transmission coefficients are then determined as for tandem connected
lines [5].

The wave reflection and transmission process for tandem and multiple parallel-
connected lines can be represented graphically with a lattice diagram for each line. The
complexity, however, is significantly increased over the single line case, in particular if
multiple reflections exist.

Reactive Terminations

In various transmission-line applications, the load is not purely resistive but has a reactive
component. Examples of reactive loads include the capacitive input of a CMOS gate, pad
capacitance, bond-wire inductance, as well as the reactance of vias, package pins, and
connectors [9,10]. When a transmission line is terminated in a reactive element, the
reflected waveform will not have the same shape as the incident wave, i.e., the reflection
coeflicient will not be a constant but be varying with time. For example, consider the step
response of a transmission line that is terminated in an uncharged capacitor C;. When the
incident wave reaches the termination, the initial response is that of a short circuit, and
the response after the capacitor is fully charged is an open circuit. Assuming the source
end is matched to avoid multiple reflections, the incident step-voltage wave is
v () = Vo/2U(t — z/vp). The voltage across the capacitor changes exponentially
from the initial voltage vep =0 (short circuit) at time r=1, to the final voltage
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Figure 610 Step-voltage response of a transmission line that is matched at the source and
terminated in a capacitor C; with time constant T = Z,Cp, = ;.

Veap(t — 00) = V} (open circuit) as

Veap(f) = Vo[1 — e /F[U(t — 1) (6.38)
with time constant

t=2ZyC,. 6.39)

where Z, is the characteristic impedance of the line. Figure 6.10 shows the step-voltage
response across the capacitor and at the source end of the line for 7 = ¢;.

If the termination consists of a parallel combination of a capacitor C;, and a resistor
Ry, the time constant is obtained as the product of C; and the parallel combination of
R; and characteristic impedance Z,. For a purely inductive termination L;, the initial
response is an open circuit and the final response is a short circuit. The corresponding time
constant is t= L /Z;.

In the general case of reactive terminations with multiple reflections or with more
complicated source voltages, the boundary conditions for the reactive termination are
expressed in terms of a differential equation. The transient response can then be
determined mathematically, for example, using the Laplace transformation [11].

Nonlinear Terminations

For a nonlinear load or source, the reflected voltage and subsequently the reflection
coefficient are a function of the cumulative voltage and current at the termination
including the contribution of the reflected wave to be determined. Hence, the reflection
coefficient for a nonlinear termination cannot be found from only the termination
characteristics and the characteristic impedance of the line. The step-voltage response for
each reflection instance can be determined by matching the I-V characteristics of the
termination and the cumulative voltage and current characteristics at the end of the
transmission line. This solution process can be constructed using a graphical technique
known as the Bergeron method [5,12] and can be implemented in a computer program.




e AR

202 Weisshaar

Rs =12,

©

+

Vose () Zo,ta Rr

-
oy

Vo

o]

Vosc(?)
Vi
"/i-!llc:l/2‘/o g——_-
1 Vrent
I
0 2ty t

Figure 611 Illustration of the basic principle of time-domain reflectometry (TDR).

Time-Domain Reflectometry

Time-domain reflectometry (TDR) is a measurement technique that utilizes the infor-
mation contained in the reflected waveform and observed at the source end to test,
characterize, and model a transmission-line circuit. The basic TDR principle is illustrated
in Fig. 6.11. A TDR instrument typically consists of a precision step-voltage generator
with a known source (reference) impedance to launch a step wave on the transmission-line
circuit under test and a high impedance probe and oscilloscope to sample and display the
voltage waveform at the source end. The source end is generally well matched to establish
a reflection-free reference. The voltage at the input changes from the initial incident
voltage when a reflected wave generated at an impedance discontinuity such as a change in
line impedance, a line break, an unwanted parasitic reactance, or an unmatched
termination reaches the source end of the transmission line-circuit.

The time elapsed between the initial launch of the step wave and the observation of
the reflected wave at the input corresponds to the round-trip delay 2¢; from the input to
the location of the impedance mismatch and back. The round-trip delay time can be
converted to find the distance from the input of the line to the location of the impedance
discontinuity if the propagation velocity is known. The capability of measuring distance is
used in TDR cable testers to locate faults in cables. This measurement approach is
particularly useful for testing long, inaccessible lines such as underground or undersea
electrical cables.

The reflected waveform observed at the input also provides information on the type
of discontinuity and the amount of impedance change. Table 6.2 shows the TDR response
for several common transmission-line discontinuities. As an example, the load resistance in
the circuit in Fig. 6.11 is extracted from the incident and reflected or total voltage observed
at the input as

14p Viotal
L 0 1—-p 0 2Vincident — Vtotal

(6.40)

where p = Vieflected/ Vincident = (R — Z0)/(Rr + Zp) and Viotal = Vincident + Veeflected-
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Table 6.2 TDR Responses for Typical Transmission-line Discontinuities.
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The TDR principle can be used to profile impedance changes along a transmission
line circuit such as a trace on a printed-circuit board. In general, the effects of multiple %
reflections arising from the impedance mismatches along the line need to be included to i
extract the impedance profile. If the mismatches are small, higher-order reflections can be ]
ignored and the same extraction approach as for a single impedance discontinuity ‘
can be applied for each discontinuity. The resolution of two closely spaced discontinuities, ]
however, is limited by the rise time of step voltage and the overall rise time of the
TDR system. Further information on using time-domain reflectometry for analyzing and
modeling transmission-line systems is given e.g. in Refs. 10,11,13-15. a
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6.4. SINUSOIDAL STEADY-STATE RESPONSE
OF TRANSMISSION LINES

The steady-state response of a transmission line to a sinusoidal excitation of a given
frequency serves as the fundamental solution for many practical transmission-line
applications including radio and television broadcast and transmission-line circuits
operating at microwave frequencies. The frequency-domain information also provides
physical insight into the signal propagation on the transmission line. In particular,
transmission-line losses and any frequency dependence in the R, L, G, C line parameters
can be readily taken into account in the frequency-domain analysis of transmission lines.
The time-domain response of a transmission-line circuit to an arbitrary time-varying
excitation can then be obtained from the frequency-domain solution by applying the
concepts of Fourier analysis [16].

As in standard circuit analysis, the time-harmonic voltage and current on the
transmission line are conveniently expressed in phasor form using Euler’s identity
e/% = cos @ + jsinf. For a cosine reference, the relations between the voltage and current
phasors, V(z) and Kz), and the time-harmonic space-time-dependent quantities, v(z, f) and
i(z, 1), are

Wz, 1) = Re{V(z)e’') (6.41)
i(z, 1) = Re{I(z)e’*"} (6.42)

The voltage and current phasors are functions of position z on the transmission line and
are in general complex.

6.4.1. Characteristics of Lossy Transmission Lines

The transmission-line equations, (general telegrapher’s equations) in phasor form for a
general lossy transmission line can be derived directly from the equivalent circuit for a
short line section of length Az — 0 shown in Fig. 6.12. They are

-@ = (R + joL)I(z) (6.43)
Z
_4@ _ 64w (6.44)
dz
LA RA
I(z) - onVT%’\—M J_ —o —I(z + Az)
V(2) CA"‘/l\ GAz  V(z+ Az)
o= —

————— Az —

Figure 6.12 Equivalent circuit model for a short section of lossy transmission line of length Az
with R, L, G, C line parameters.
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The transmission-line equations, Eqgs. (6.43) and (6.44) can be combined to the complex
wave equation for voltage (and likewise for current)

&2V(2)

= (R +jwL)(G + joC)V(2) = Y*V(2) _ (6.45)

The general solution of Eq. (6.45) is
V@)=V @)+ V(@) =Vie "+ Vyet”” (6.46)

where y is the propagation constant of the transmission line and is given by

y =a+jB = (R +joLXG + joC) - (6.47)

and V§ = |Vile/" and Vi = |V |e/* are complex constants. The real time-harmonic
voltage waveforms ¥(z, f) corresponding to phasor V(z) are obtained with Eq. (6.41) as

Wz, ) =vT(z, )+ v (z,0) (6.48)
= |V e~ cos(wt — Bz + ¢*) + |V |€* cos(wt + Bz + ¢7) )
and are illustrated in Fig. 6.13.

The real part « of the propagation constant in Eq. (6.47) is known as the attenuation
constant measured in nepers per unit length (Np/m) and gives the rate of exponential
attenuation of the voltage and current amplitudes of a traveling wave.* The imaginary
part of y is the phase constant f = 27/A measured in radians per unit length (rad/m), as in
the lossless line case. The corresponding phase velocity of the time-harmonic wave is
given by

vy = (6.49)

™Il &

which depends in general on frequency. Transmission lines with frequency-dependent
phase velocity are called dispersive lines. Dispersive transmission lines can lead to signal
distortion, in particular for broadband signals.

The current phasor I(z) associated with voltage ¥(z) in Eq. (6.46) is found with

Eq. (6.43) as
ot —

4 .
I(z) = 7 v — ;—0 et (6.50)

*The amplitude attenuation of a traveling wave V+(z) = V§e™** = Vfe e /% over a distance / can
be expressed in logarithmic form as In|V*(z)/V*(z+ D = al (nepers). To convert from the
attenuation measured in nepers to the logarithmic measure 20log;, |V*(2)/V*(z + D)} in dB, the
attenuation in nepers is multiplied by 20 log;, e ~ 8.686 (1 Np corresponds to about 8.686 dB). For
coaxial cables the attenuation constant is typically specified in units of dB/100ft. The conversion to

Np/m is 1dB/100 ft~ 0.0038 Np/m.
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Figure 613 Illustration of a traveling wave on a lossy transmission line: (a) wave traveling in +z
direction with ¢* =0 and @=1/(2) and (b) wave traveling in —z direction with ¢~ =60° and
a=1/(21).

The quantity Z, is defined as the characteristic impedance of the transmission line and is
given in terms of the line parameters by

R+ joL
%= \G¥jaC (6.31)

As seen from Eq. (6.51), the characteristic impedance is in general complex and frequency

dependent.
The inverse expressions relating the R, L, G, C line parameters to the characteristic

impedance and propagation constant of a transmission line are found from Egs. (6.47) and
(6.51) as

R+ jwl = yZ, (6.52)

G +joC = y/Zo (6.53)
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These inverse relationships are particularly useful for extracting the line parameters
from experimentally determined data for characteristic impedance and propagation

constant.

Special Cases
For a lossless line with R=0 and G=0, the propagation constant is y =jwvLC.
The attenuation constant ais zero and the phase velocity is v, = w/B = 1/+/LC. The

characteristic impedance of a lossless line is Zy = /L/C, as in Eq. (6.14).

In general, for a lossy transmission line both the attenuation constant and the phase
velocity are frequency dependent, which can give rise to signal distortion.* However, in
many practical applications the losses along the transmission line are small. For a low loss
line with R <« oL and G « oC, useful approximate expressions can be derived for the
characteristic impedance Z, and propagation constant y as

L .1 (R G

and

R /|C G /L
y~§\g+5@+m¢z€ (6.55)

The low-loss conditions R « wL and G « wC are more easily satisfied at higher
frequencies.

6.4.2. Terminated Transmission lines

If a transmission line is terminated with a load impedance that is different from the
characteristic impedance of the line, the total time-harmonic voltage and current on
the line will consist of two wave components traveling in opposite directions, as given
by the general phasor expressions in Egs. (6.46) and (6.50). The presence of the two
wave components gives rise to standing waves on the line and affects the line’s input

impedance.

Impedance Transformation

Figure 6.14 shows a transmission line of finite length terminated with load impedance Z; .
In the steady-state analysis of transmission-line circuits it is expedient to measure distance
on the line from the termination with known load impedance. The distance on the line
from the termination is given by z’. The line voltage and current at distance z' from the

*For the special case of a line satisfying the condition R/L = G/C, the characteristic impedance
Zo = +/L/C, the attenuation constant o = R//L/C, and the phase velocity v, = 1/JV/LC are
frequency independent. This type of line is called a distortionless line. Except for a constant signal
attenuation, a distortionless line behaves like a lossless line.
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termination can be related to voltage Vz = V(Z/ = 0) and current I = I(z’ = 0) at the
termination as

V(Z') = Vi coshyZ + I Zy sinh yZ’ . (6.56)
/ 1 : | /
I#) = VL(—)smh yZ + I cosh yz (6.57)
Zy

where Vi /I = Z;. These voltage and current transformations between the input and
output of a transmission line of length z’ can be conveniently expressed in ABCD matrix
form as*

[ V(z’)] _ [A B] [ V(O)] _ [ cosh(yz’) Zysinh(yz )jl [ V(O)] (6.58)
IZY| | C D|| IO | | (1/Zp)sinh(yz) cosh(yz) 1(0) ’

The ratio V(z')/1(z’) defines the input impedance Zi;(z') at distance z’ looking toward
the load. The input impedance for a general lossy line with characteristic impedance Z,
and terminated with load impedance Z; is

V() Z1 + Zytanh yZ/

Zan(7) = 1(z) Zo + Z1 tanh y7'

(6.60)

It is seen from Eq. (6.60) that for a line terminated in its characteristic impedance
(Z1 = Z,), the input impedance is identical to the characteristic impedance, independent
of distance z. This property serves as an alternate definition of the characteristic
impedance of a line and can be applied to experimentally determine the characteristic
impedance of a given line.

The input impedance of a transmission line can be used advantageously to determine
the voltage and current at the input terminals of a transmission-line circuit as well as the
average power delivered by the source and ultimately the average power dissipated in
the load. Figure 6.15 shows the equivalent circuit at the input (source end) for the
transmission-line circuit in Fig. 6.14. The input voltage Vi, and current [, are easily

*The ABCD matrix is a common representation for two-port networks and is particularly useful for
cascade connections of two or more two-port networks. The overall voltage and current
transformations for cascaded lines and lumped elements can be easily obtained by multiplying the
corresponding ABCD matrices of the individual sections [1]. For a lossless transmission line, the
ABCD parameters are

[A B] _ [ cos jZOsino] 659
¢ D lossless line (j/Zy)sin®  cosd . .

where 8 = g7 is the electrical length of the line segment.
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Figure 6.15 Equivalent circuit at the input of the transmission line circuit shown in Fig. 6.14.

determined from the voltage divider circuit. The average power delivered by the source to
the input terminals of the transmission line is

1
Poye,in = 3 Ref leltl} (6.61)

The average power dissipated in the load impedance Z; = Ry + /XL is

1 1 Ak
Puve,r =5 Re(VLI}} = 5| Ry =5 =

sz Re (6.62)

where ¥V and I, can be determined from the inverse of the ABCD matrix transformation
Eq. (6.58).* In general, Pyye 1 < Paye,in for a lossy line and Paye, 1, = Pave,in for a lossless
line.

Example. Consider a 10m long low-loss coaxial cable of neminal characteristic
impedance Z, =75, attenuation constant « =2.2dB per 100ft at 100 MHz, and
velocity factor of 78%. The line is terminated in Z; =100, and the circuit is
operated at f=100MHz. The A4BCD parameters for the transmission line are
A=D=-0.1477+/0.0823, B=(—0.9181+,74.4399)Q2, and C=(-0.0002+;0. 0132)Q71.
The input impedance of the line is found as Zi, =(59.3+/4.24)S2. For a source voltage
|V's| =10V and source impedance Zs="75%, the average power delivered to the input of
the line is Pyyein = 164.2mW and the average power dissipated in the load impedance is

Pave, . =138.3mW. The difference of 25.9mW (~16% of the input power) is dissipated in
the transmission line.

*The inverse of Eq. (6.58) expressing the voltage and current at the load in terms of the input voltage
and current is

[?LL ] - [—DC _AB] [1;] 6.63)
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Transmission Lines as Reactive Circuit Elements
In many practical transmission-line applications, transmission-line losses are small and
often negligible. In particular, short sections of transmission lines used as circuit elements

in high-frequency circuits are often assumed to be lossless.
For a lossless line with ¥ = j8 and terminated in a complex load impedance Z;,

the input impedance is

Zy +jZytanb

@) =Zy=—--—— .
Zu@) =207 (6.64)
where 0 = Bz’ = 277/ /) is the electrical distance from the termination. Two particularly
important special cases are the short-circuited line with Z; =0 and the open-circuited line

with Z; — oo. ,
The input impedance of an open-circuited lossless transmission line is

Zoe = —jZy ot = jXoc (6.65)

which is purely reactive. The normalized reactance is plotted in Fig. 6.16a. For small line
lengths of less than a quarter wavelength (6 < 90°), the input impedance is purely

Zoe
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Figure 616 Normalized input reactance of a lossless transmission line terminated in (a) an open
circuit and (b) a short circuit.
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capacitive, as expected. With increasing electrical distance 6, the input reactance alternates
every quarter wavelength between being capacitive and inductive. Any reactance value
—00 < Xg < +00 can be achieved by appropriately adjusting the electrical length (i.e., by
varying the physical length or the frequency (wavelength)). Furthermore, for line lengths
corresponding to multiples of a half wavelength, the input impedance is again an open
circuit. In contrast, for line lengths corresponding to odd multiples of a quarter
wavelength, the input impedance is zero [Zo(Z = A/4+12/2)=0,n=0,1,2,...].

The input impedance of a short-circuited lossless transmission line is also.purely
reactive and is given by

Zy = jZytanf = jX (6.66)

Figure 6.16b shows the normalized reactance X;./Zy as a function of electrical length 6.
For small line lengths of less than a quarter-wavelength (6 < 90°), the input impedance of
a short-circuited line is purely inductive, as expected. The dependence of the input
reactance of the short-circuited line on electrical length 6 corresponds to that of the open-
circuited line with a shift by a quarter wavelength. In particular, for line lengths
corresponding to multiples of A/2, the input impedance is zero, whereas for line lengths
corresponding to odd multiples of A/4, the input impedance of a short-circuited lossless
line is an open circuit [Zy(z’ = A/4 +nr/2) > o0, n=0,1,2,...].

An important application of open- and short-circuited transmission lmes is the
realization of reactive circuit elements for example for matching networks and filters, in
particular at microwave frequencies ranging from a few gigahertz to tens of gigahertz.* At
these frequencies, ordinary lumped elements become exceedingly small and difficult to
realize and fabricate. In contrast, open- and short-circuited transmission-line sections
with lengths on the order of a quarter wavelength become physically small enough to
be realized at microwave frequencies and can be easily integrated in planar circuit
technology. In practice, it is usually easier to make a good short-circuit termination than
an open-circuit termination because of radiation from the open end and coupling to
nearby conductors.

Example. To illustrate the design of reactive transmission-line segments, an
equivalent inductance Le; = SnH and an equivalent capacitance Ceq = 2pF are realized

*Open- and short-circuit input impedance measurements for a general lossy transmission line can
also be used to determine the transmission-line parameters. From Z, = ZjcothyZ and
Zs. = Zytanh yZ’ for a lossy line follows

Zo = ZosZs (6.67)

and

Z
tanhyz = =%

= (6.68)

However, care should be taken in the extraction of y = & + jB from Eq. (6.68) due to the periodicity
of the phase term Bz, which must be approximately known.
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at f=5GHz using a short-circuited 50-$2 microstrip line with effective dielectric constant
€ir = 1.89. From Eq. (6.66) follows

Leg,sc ZOLnOL (6.69)

1

" wZotanbc (6.70)

Ceq, ¢ —

The minimum electrical lengths for positive values for Ley and Ceq are found as 6 = 72.3°
(I./»=0.201) and 6c =162.3° (Io/» =0.451). With A =4.36cm the corresponding
physical lengths of the short-circuited microstrip segments are J/p = 0.88cm and
lc =197cm.

Complex Reflection Coefficient

The behavior of a terminated line is further examined in terms of incident and reflected
waves at the termination. The ratio of the voltage phasors ¥~ and V" at the termination
is defined as the voltage reflection coefficient I', = ¥~/V* and is given in terms of the
load impedance Z; and characteristic impedance Z, as

. Zr— 7y
'y =IT e191. L b
L=l Zi+ 7,

6.71)
The load reflection coeflicient T’y is in general complex. Here, a different symbol than in
Eq. (6.23) is used to emphasize the definition of the complex reflection coefficient as ratio
of voltage phasors. For a passive load |z} < 1. If the terminating load impedance equals
the characteristic impedance of the line (matched termination), I'; =0 and ¥V~ = 0. For
an open-circuit termination, I' =T, = +1, while for a short-circuit termination,
I't =Ty =—1. In general, for a purely reactive termination Z;=jX; (Xp >0 or
X; < 0) and real characteristic impedance, the magnitude of the reflection coefficient
is ITz| = 1.

Standing Waves

The total voltage and current along a lossless transmission line with y =jB can be
expressed with reflection coefficient I'z at the termination as

V(Z) = V§{ePF + e ) (6.72)
N _ VT e gy
I(Z) = 70{e 7P _ T e} | (6.73)

The superposition of the two opposing traveling wave components leads to periodic
variations in voltage and current along the line due to constructive and destructive wave
interference. The resulting wave interference component is known as a standing wave. For
an arbitrary termination with reflection coefficient I'y = |T"z|e/%, the voltage and current
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Figure 647 Voltage and current standing-wave patterns for a lossless transmission line terminated
in a complex load impedance with I'y = 0.6/,

standing-wave patterns are given by

V() = |V;|\/ (1 + ["L]?cos? (ﬂz’ - %L) + (1 = |T'|)? sin? (ﬂz’ - %L) (6.74)

ey =2

Z \/ (1 —|TL])? cos? (ﬂz’ - %) + (1 + |T'])? sin® (ﬂz’ - 5)25) (6.75)

Figure 6.17 illustrates the relative voltage and current variations along a lossless
transmission line for a general complex load impedance with T'; = 0.6/ In general,
the standing-wave pattern on a lossless transmission line is periodic with a period of A/2
(or 180°in ). The voltage magnitude alternates between the maximum and minimum
values V. and Vi, given by

Vinax = (1 + [T2DI V5| (6.76)
Viin = (1 — [TLDIV{) (6.77)

Similarly, the maximum and minimum current values Iy and Iy, are

Vol Vinax

= r;p—rt=—= 6.78

Imax (1+l LI) ZO ZO ( )
|V3-| Vmin

Ipin =1 = I))—=—=—5— 6.79

The locations with maximum voltage can be found from the condition gz’ — 6./2 = nx
(n=0,1,2,..)). The minimum voltages are located a quarter wavelength from the
maximum voltages. Locations with current maximum correspond to locations with
minimum voltage and vice versa.
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The ratio of Viax t0 Viin is defined as the standing-wave ratio (SWR, or S for short)
and is given in terms of the reflection coefficient at the termination by

Vinax _ Inax _ 1+ |FLI

- SWR = = =
Vmin  Imin 1 —1TLl

(6.80)

The standing-wave ratio is a measure for the amount of mismatch at the termination. The
standing-wave ratio for a matched termination is SWR = 1. For an open-circuit, a short-
circuit, or a purely reactive termination SWR — co. For a resistive or complex
termination, 1 < SWR < oo. In general, SWR varies in the range

1 <SWR < oo (6.81)

Table 6.3 shows the standing-wave patterns for several special types of terminations.
For an open-circuit termination and a purely resistive termination with Ry > Zo, the
voltage is maximum at the termination. In contrast, the voltage at the termination is
minimum for a short-circuit termination or a purely resistive termination with Ry < Zo.
A resistive termination causes a compression in the standing-wave pattern, whereas a
reactive termination gives rise to a shift of the voltage maximum away from the
termination. For a complex termination as shown in Fig. 6.17 with I'; = 0.6e/*", the
standing-wave pattern is both compressed (SWR = 4) and shifted toward the source side
by 6/2 = +30° compared to the open-circuit case.

The standing-wave ratio and the distance from the termination to the nearest voltage
maximum can be determined in an experimental setup to find the complex reflection
coefficient and, hence, the complex impedance of an unknown termination.* The reflection
coefficient magnitude |T"z| is given in terms of SWR as

SWR -1
'l =SWwR+1 (6.82)

Example. From standing-wave measurements, the standing-wave ratio is found
as SWR = Vpayx/Vmin = 5, the distance between successive voltage minima is 20cm,
and the distance from the termination to the nearest voltage minimum is 4cm. From
Eq. (6.82) follows the magnitude of the reflection coefficient at the termination as
IT| = (5 — 1)/(5 + 1) = 2/3. The wavelength on the line corresponds to twice the distance
between successive voltage minima and is A = 40cm. The distance from the termination
to the closest voltage minimum is 4/40 A = A/10 or 36°, and the distance to the nearest
voltage maximum is A/10 4 A/4 = 0.35 A or 126°. The phase of the reflection coefficient is
6, = 2 x 126° = 252°. The corresponding load impedance is found with Zy = Zo(1 +T')/
(1 =Ty) as Z; = (0.299 — j0.683)Z,.

In most applications, the phase information for the reflection coefficient is not
needed. The magnitude of the reflection coefficient directly determines the fraction of

*In practice, it is easier to accurately determine the location of a voltage minimum. The location to
the voltage maximum can be obtained from the location of the voltage minimum by adding or
subtracting a quarter wavelength.
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Table 6.3 Standing-wave Patterns on a Lossless Transmission Line for Special Types

of Terminations

Type of termination

Standing-wave pattern

Open circuit
|V ()| = 2|V Il cos pZ|
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|1(z)| —70|Slnﬁ2/|
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V()| =21V || sin 2|
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2 .
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L
vt
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average incident power that is reflected back on the transmission line. With Egs. (6.72) and
(6.73), the net power flow on a lossless transmission line is given by

2
Vsl

720—(1 —IT?) = P (1 = ITL)?) (6.83)

Pue(Z) = %Re{V(z')I*(z’ )} =

which is independent of position 2z’ on the line. The fraction of average incident power Pt
that is reflected is

Py =—ITLPL, (6.84)

The negative sign in Eq. (6.84) indicates the power flow away from the load. Note that the
incident power P, is the combined power due to all forward traveling wave components
and thus depends on the load impedance if the source is not matched (Zs # Z).

In many transmission systems, such as a radio transmitter site, it is critical to
monitor the amount of reflected power. The percentage of reflected power can be directly
determined from the measured standing-wave ratio. For example, for SWR =1.5, the
magnitude of the reflection coefficient is 0.2, which means that 4% of the incident power is
reflected. For a 60-KW transmitter station this would amount to a reflected power of

2400 W.

6.4.3. The Smith Chart

The Smith chart, developed by P. H. Smith in 1939, is a powerful graphical tool for solving
and visualizing transmission-line problems [17,18]. Originally intended as a graphical
transmission-line calculator before the computer age to perform calculations involving
complex impedances, the Smith chart has become one of the primary graphical display
formats in microwave computer-aided design software and in some commonly used
laboratory test equipment, in particular the network analyzer.

The transformation of complex impedance along a transmission line given in
Eq. (6.64) is mathematically complicated and lacks visualization and intuition. On the
other hand, the reflection coefficient undergoes a simple and intuitive transformation
along the transmission line. The reflection coefficient at distance 2’ from the termination is
defined as T'(z') = V~(¢)/ V() and is given in terms of the reflection coefficient at the
termination 'y by

(7)) = Tpe %7 = |1 |e/6=2%7) (6.85)

The magnitude of the reflection coefficient is unchanged along the lossless line and
the phase of the reflection coefficient is reduced by twice the electrical distance from the
termination.

The Smith chart combines the simple transformation property of the reflection
coefficient along the line with a graphical representation of the mapping of normalized
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Figure 6.18 Illustration of the basic features of the Smith chart.

impedance to the complex reflection coefficient plane given by

_ Zn(x) _1+TC)

2) === =11 (6.86)

Here, z=r+jx = Z/Z; is defined as the normalized impedance with respect to the
characteristic impedance of the line. The combination of these two operations in the Smith
chart enables the simple graphical determination and visualization of the impedance
transformation along a transmission line. Other parameters, such as the standing-wave
ratio or the locations of voltage maxima and minima on the line can be simply read off the
Smith chart, and more advanced transmission-line calculations and circuit designs can be
performed with the Smith chart.

Figure 6.18 illustrates the basic features of the Smith chart. The chart shows. a grid
of normalized impedance coordinates plotted in the complex plane of the reflection
coefficient. The impedance grid consists of a set of circles for constant values of normalized
resistance r and a set of circular arcs for constant values of normalized reactance x. Any
normalized impedance z = r + jx on a transmission line corresponds to a particular point
on or within the unit circle (|T'] = 1 circle) in the complex plane of the reflection coefficient.
For a matched impedance the r = 1 circle and X = 0 line intersect at the origin of the Smith
chart (I'=0). The open-circuit point I'=1 is to the far right, and the short-circuit point
I'=—1 is to the far left, as indicated in Fig. 6.18. In a real Smith chart, as shown
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Figure 6.19 Smith chart example for Z; = (25 +25)Q and Z; = 50 Q.

in Fig. 6.19, a fine grid is used for added accuracy, and scales are added to help with the
calculation of phase change in reflection coefficient along the transmission line.
Example. To illustrate the use of the Smith chart for transmission-line calculations,
consider a lossless line with characteristic impedance Zy = 50 @, which is terminated in a
complex load impedance Z; =(25+,25)Q. The normalized load impedance is
Zz=0.5+;0.5 and is shown on the Smith chart as the intersection of the r=0.5 and
X = 0.5 grid circles. The load reflection coefficient can be directly read off from the Smith
chart. The radius of the transformation circle through Z, (relative to the radius of the unit
circle r = 0) gives the magnitude of the reflection coefficient as |T'z| = 0.45. The phase of
the reflection coefficient is 8; = 116.5°. The standing-wave ratio on the line corresponds to
the normalized maximum impedance Zpax along the line, which is real and lies on the
intersection of the transformation circle and the X = 0 line. The standing-wave ratio can be
directly read off the Smith chart as SWR = 2.6. For a given electrical length of the line, the
input impedance is found by first determining the reflection coefficient at the input through
clockwise rotation on the transformation (SWR) circle by twice the electrical length of the
line, as given by Eq. (6.85). Assuming an electrical length of / = 0.1025 A, the phase of the
reflection coefficient changes by —28/ = —4m x 0.1025. This amounts to a rotation in
clockwise direction by about 74°. For convenience, the Smith chart includes scales around
its periphery, which can be used to determine the amount of phase rotation directly in
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units of wavelengths. In this example, the starting value at the load on the rotation scale
labeled “toward generator” is 0.088. The end value is 0.088 + 0.1025 = 0.1905. The phase
of the reflection coefficient is read off as 6, = 42.5°. Finally, the input impedance is
obtained as the intersection of the line through the origin with constant phase and the
transformation circle. The normalized input impedance is approximately found as
Zin = 1.5+ j1.1, or Zin(Z =1 = 0.1025%) = (75 + j55) Q.

In transmission-line problems with parallel-connected elements, it is advantageous to
work with admittances rather than impedances. The impedance Smith chart can be
conveniently used with normalized admittances y = g+ jb = YZ; by considering the
relationship

where y = 1/z. This relationship shows that the impedance grid can be directly used as
admittance grid with g = const circles and b = const circular arcs if the reflection
coefficient is multiplied by negative one, which amounts to a rotation by 180° on the Smith
chart. Then, the open circuit is located at the far left and the short circuit is at the far right.
The conversion from normalized impedance coordinates to normalized admittance
coordinates given by y = 1/z can be simply achieved on the Smith chart by a 180° rotation
along the transformation (SWR) circle. For example, for the normalized load impedance
Z = 0.5 +j0.5, the normalized load admittance is found as y = 1/z = 1 — j, as indicated in
Fig. 6.19.

6.4.4. Impedance Matching

In many transmission-line applications, it is desirable to match the load impedance to the
characteristic impedance of the line and eliminate reflections in order to maximize the
power delivered to the load and minimize signal distortion and noise.* Reducing or
eliminating reflections from the load is particularly important in high-power RF
transmission systems to also minimize hot spots along a transmission line (e.g., the feed
line between the transmitter and the antenna) that are caused by standing waves and not
exceed the power-handling capabilities of the transmission line. Excessive reflections can
also damage the generator, especially in high-power applications.

In practice, the impedance of a given load is often different from the characteristic
impedance Z, of the transmission line, and an additional impedance transformation
network is needed to achieve a matched load condition. Figure 6.20 illustrates the basic
idea of matching an arbitrary load impedance Z; to a transmission line. The matching
network is designed to provide an input impedance looking into the network that is equal
to Z, of the transmission line, and thus eliminate reflections at the junction between the
transmission line and the matching network. The matching network is ideally lossless so

*In general, impedance matching can be done at the load or the source end, or at both ends of the
transmission line. For a matched source, maximum power is delivered to the load when it is
matched to the transmission line and power loss on the line is minimized. For a given source
impedance Zg, maximum power transmission on a lossless line is achieved with conjugate matching

at the source (Zi, = Z%) [1].
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Figure 6.20 General illustration of impedance matching at the termination.

that all incident power on the line ends up being dissipated in the load. A lossless matching
network may consist of lumped reactive elements or reactive transmission-line elements
(stubs) at higher frequencies and/or cascaded transmission-line sections of appropriate
length.

A matching network requires at least two adjustable parameters, such as a lumped
series element and a lumped shunt element, each with adjustable reactance value, to
independently transform the real and imaginary parts of the load impedance. Because the
elements in the matching network are frequency dependent, the exact matching condition
is generally achieved only at a single design frequency. For other frequencies, the reflection
coefficient will be sufficiently small only over a narrow bandwidth about the design
frequency. Larger matching bandwidths may be achieved if more independent elements
are used in the matching network.

Many different design choices of matching networks are available. The selection of a
particular matching network may depend on a number of factors including realizability
in a given technology, required bandwidth, simplicity, occupied space, tunability of the
matching network, and cost of implementation. In the following, two common matching
methods using sections of lossless transmission lines are described to further illustrate the
concept of impedance matching.

Quarter-wave Transformer

A lossless transmission line of length /=A/4 has a special simplified impedance
transformation property, which can be advantageously used for impedance matching.
With Eq. (6.64), the input impedance of a lossless transmission line of length / = A/4
and characteristic impedance Zy 7 that is terminated with load impedance Z; is

Z§r
Zinljerja= 71:‘ (6.88)

In particular, any purely resistive load impedance Z; = Ry is transformed into a resistive
input impedance given by Ry, = Z&T /Rr. Hence, a quarter-wave section of a transmission
line can be directly used to match a purely resistive load impedance R; to a line with
characteristic impedance Z, if the characteristic impedance Zyr of the quarter-wave
section is given by

Zo1 = VR Z, (6.89)

For example, to match a half-wave dipole antenna with input impedance Z; ~73Q to a
twin-lead cable with' Zy; = 3002, the -characteristic impedance of the quarter-wave
transformer should be Zy 1 = +/73 2 - 300 Q2 ~ 148 Q.
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Figure 6.21 Impedance matching of a complex load using a quarter-wave transformer.

If the load impedance is complex, it is necessary to first transform the complex
impedance to a real impedance. This can be accomplished with a section of transmission
line of appropriate length [, between the load and the quarter-wave transform, as
illustrated in Fig. 6.21. A transmission line can transform any complex load impedance
with |T'.| <1 to a resistive impedance at the locations with either voltage maximum or
voltage minimum. The transmission-line transformation of a complex load to a real
impedance is best illustrated on the Smith chart. For example, consider a complex load
consisting of a parallel combination of Ry = 125Q and Cp = 2.54pF. At the design
frequency fy=1GHz, the load impedance is Z; = (25 —j50) Q. The normalized load
impedance z; = 0.5 —j for Zy =50 is shown on the Smith chart in Fig. 6.22. The
transformation circle intersects the X = 0 grid line at ryin = 0.24 and rpax = 1/rmin ® 4.2.
The distance to the closest location with real input impedance (Zj, = rmin) is found as
I, =0.135A. The input impedance at this location is Zj, | = R = rpinZo =~ 12, and
the characteristic impedance of the quarter-wave transformer is found as
Zor = +/RZy = 24.5Q. The second solution with real input impedance is at the
voltage maximum with R = rg,zZo ~210Q and [ =0.1351+0.251 = 0.385A. The
corresponding characteristic impedance of the quarter-wave transformer is
Zy. 1 = /RZy = 102.5 Q. Typically, the solution with the shortest line length [ is chosen
unless it is difficult to realize the characteristic impedance of the corresponding quarter-
wave transformer.

Figure 6.23 shows the response of the matching network as a function of frequency.
The matching network gives an exact match (SWR =1) at the design frequency
fo=1GHz. The bandwidth defined here as the frequency band around the center
frequency with SWR < 1.5 is about 100 MHz or 10%. The standing-wave ratio response
without matching network is also shown in Fig. 6.23 for comparison.

The bandwidth of the matching network can be increased, for example, by cascading
multiple quarter-wave sections (multisection quarter-wave transformer) with smaller
impedance steps per section giving an overall more gradual impedance transformation [1].
This type of matching network can be easily implemented in planar transmission line
technology, such as microstrip, where the characteristic impedance can be changed
continuously by varying the line width or spacing.

Stub Matching

In another common impedance matching technique, a reactive element of appropriate
value is connected either in series or in parallel to the transmission line at a specific
distance from the load. The reactive element can be realized as open- or short-circuited
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Figure 6.22 Graphical illustration on the Smith chart of quarter-wave matching and shunt (stub)
matching of a complex load impedance Z1/Zo = 0.5 —J.

Frequency (GHz)

Figure 6.23 SWR=1.5 bandwidth of an example matching network using a quarter-wave
transformer. Also shown with a dashed line is the response without the matching network.
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stub or as lumped inductor or capacitor element. The two design parameters of a stub
matching network are the distance from the termination at which the reactive element is
connected, and the stub length needed to realize the required reactance.

The general matching procedure with a single reactive element or a stub is
demonstrated for a parallel (shunt) configuration with shunt admittance element Yy,
connected at distance d from the termination, as illustrated in Fig. 6.24. For shunt
connections it is more convenient to work with admittances than with impedances. The
transmission line transforms the load admittance Yy = 1/Z; to an input admittance
Yin = G+JB at distance d from the termination. In the first step of the matching
procedure, distance d is selected such that the real part of the input admittance is matched
as G = Yy, and the nonzero input susceptance B is determined. In the second step, a
reactive shunt element with admittance Yy, = —jB is added to cancel out susceptance B in
the input admittance. The summation of shunt admittance and input admittance of the
line yields a matched total admittance Yy = 1/Z.

The shunt matching procedure is further illustrated on the Smith chart shown in
Fig. 6.22. The same normalized load impedance z; = 0.5 —j as in the previous matching
network example is assumed. The corresponding normalized load admittance is found
from the Smith chart as y, = 0.4 + ;0.8. The transformation circle with [I'| = const
intersects the g =1 circle at two points labeled as P; and P, satisfying the condition
Yin = 1 +jb. Any complex load admittance with |[I'z| <1 can be transformed by a
transmission line of appropriate length to a point on the g = 1 circle. The normalized
input admittances at points P; and P, are Yy ; =1+/1.58 and y;,,=1-/1.58,
respectively. The distance from the termination to point P; on the line with matched
real part of the input admittance is found as d; = 0.063A. The distance to P, is
dy = dy +0.144 A = 0.207 A. The normalized input susceptance b, = 1.58 at position P, is
capacitive and needs to be canceled with an inductive shunt element with normalized
admittance y,, = —jl1.58. The required shunt element may be realized with a lumped
inductor or an open- or short-circuited stub of appropriate length. Similarly, matching
position P, with y;, , =1 —;1.58 requires a capacitive shunt element to cancel the
susceptance. The capacitive shunt admittance may be realized with a lumped capacitor or
an open- or short-circuited stub of appropriate length.

6.5. FURTHER TOPICS OF TECHNOLOGICAL IMPORTANCE
AND FUTURE DIRECTIONS

In this section, further transmission-line topics of technological importance are briefly
discussed and current developments and future directions are outlined.
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6.5.1. Coupled Lines

Transmission-line circuits often consist of multiple parallel conductors that are in close
proximity to each other. Examples of multiconductor transmission-line systems include
multiphase power lines, telephone cables, and data bus lines on the printed-circuit board
(PCB) of a digital system. Due to the proximity of the conductors, the time-varying
electromagnetic fields generated by the different transmission lines interact, and the lines
become capacitively and inductively coupled. The propagation characteristics of coupled
lines depend not only on the line parameters of the individual lines but also on the mutual
distributed capacitance and inductance parameters.

The capacitive and inductive coupling between transmission lines often leads to

" adverse effects in a transmission system. As an example, coupling between closely spaced

lines (interconnects) in digital systems can lead to unwanted crosstalk noise and generally
sets an upper limit in interconnection density (see e.g. Refs. 10 and 19). On the other hand,
electromagnetic coupling between adjacent lines can be used to advantage to realize a
variety of components for microwave circuits such as filters, directional couplers, and
power dividers [1]. Recently, there has also been increased interest in the realization
of compact three-dimensional embedded passive components for RF and mixed-
signal modules, and new compact designs using coupled lines have been demonstrated
(e.g., Ref. 20). A general overview of coupled transmission-line theory and its
application to cross-talk analysis and design of passive microwave components is given,
e.g., in Ref. 5.

6.5.2. Differential Lines

A differential line can be considered as a special case of two symmetric coupled lines. A
differential line consists of two closely spaced symmetric signal conductors that are driven
with identical signals of opposite polarity with respect to a common ground reference
(differential signaling). The main advantages of differential lines include an increased
immunity to common-mode noise and the localized ground references at the input and
output of the line. In particular, the net return current in the ground conductor of a
differential transmission line is ideally zero, which helps to eliminate or reduce the effects
of nonideal current return paths with finite resistance and inductance. As a disadvantage,
differential lines require more conductor traces and generally need to be carefully routed to
avoid conversion between differential- and common-mode signals. Because of the
advantageous properties of differential lines compared to regular (single-ended) lines,
however, differential lines are increasingly being used for critical signal paths in high-speed
analog and digital circuits (see, €.g., Refs. 10 and 19). Differential circuit architectures are
also being employed in parts of RF circuits because of their superior noise-rejection
properties [21].

6.5.3. Chip- and Package-level Interconnects

Transmission lines or electrical interconnects are present at various levels of an electronic
system ranging from cabling to printed-circuit board level to chip packaging to chip level.
The electrical interconnections in an electronic package constitute the electrical interface
between the chip (or a set of chips packaged in a module) and the rest of the electronic
system. The package interconnections can generally be represented by a combination of
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lumped R, L, C elements and nonuniform coupled transmission lines. In some advanced
high-performance packages the interconnections are realized in form of a miniature
printed wiring board with several levels of metalization. The electronic package may
significantly influence the electrical performance of an integrated circuit; hence, the
package characteristics should be included in the design phase of the integrated circuit.
The co-design of the integrated circuit and package has recently been pursued for both
digital and RF integrated circuits as well as for system-on-a-chip solutions.’

At the chip level, interconnects in VLSI and RF integrated circuits usually behave as
lumped or distributed RC circuits because of the large series resistance of the metalization.
With increasing clock frequencies, however, the distributed series inductance becomes
more and more significant. As a result, inductance effects cannot be neglected in some
of the longer on-chip interconnects in present-day high-performance VLSI circuits [22].
On-chip interconnects with nonnegligible inductance exhibit transmission-line behavior
and need to be modeled as lossy transmission lines rather than RC lines.

6.5.4. CAD Modeling of Transmission Lines

The development of dispersive single and coupled transmission-line models for computer-
aided design (CAD) tools is an active area of research in both industry and academia.
In general, the line parameters of a transmission line are frequency dependent because of
conductor loss (including skin and proximity effects), substrate loss, and dispersion
induced by inhomogeneous dielectric substrates. The frequency-dependent transmission-
line parameters, however, cannot be represented directly in a time-domain simulator
environment such as SPICE. Several approaches for modeling lossy dispersive
transmission lines have been developed including (1) convolution with the impulse
response of the lossy transmission line, (2) synthesis of the frequency-dependent line
parameter in terms of ideal lumped elements and controlled sources for a short line
section, and (3) mathematical macromodels obtained with model-order reduction (MOR)
techniques resulting in an approximation of the transmission-line characteristics with a
finite number of pole-residue pairs. Other areas of current and future interest include the
efficient extraction of the line parameters (or parasitics) and the cosimulation of the
electromagnetic, thermal, and mechanical phenomena in an electronic system. A review of
the methodologies for the electrical modeling of interconnects and electronic packages is
given in Ref. 23. Modeling of coupled transmission lines—interconnects based on model-
order reduction is further described in Ref. 24.
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