Using Program Memory for Storage - work in progress

Thanks to Dean Cammera for his excellent tutorial on using program memory. Most of this

work was derrived from his tutorial.
Sometimes our programs have large tables or many strings to store. If we

declare a string like this:

char error_codel[7] = {"errori"};

Or, an inline string:

uart-puts("This is my newest shaded string.");

gce will by default, put the string into RAM as initalized data storage
using the startup code. This makes sense for workstation programs as
string functions operate on pointers to strings located in RAM.



Using Program Memory for Storage

However, on most microcontrollers, RAM is scarce and program (flash)
memory is plentiful. It is often helpful to store constant data in program
memory and perserve RAM. AVR Libc provides a set of functions and
macros that allow us to do that. To enable this functionality we declare:

#include <avr/pgmspace.h>
To have gcc store our string into program memory, we can say:
const char error_codel[7] PROGMEM = {"errori"};

The PROGMEM attribute modifier forces the string to be stored into
program memory.



Using Program Memory for Storage

The library progmem.h also includes a macro "PSTR" that allows us to
create an inline string stored in program memory.

uart_puts(PSTR("This is my string"));
The string " This is my string” will be stored in program memory.
Note:

The PSTR macro can only be used within functions.
The compiler treats all PSTR declared strings as separate entities.



Using Program Memory for Storage

If we create strings in program memory, our usual functions that expect
pointers to RAM memory will not work. We need a way to make our
functions understand that the pointers are pointing to program memory.
For example, suppose you have the following UART function:

void uart_puts(char *str){
while(*str !'= °\0°){
uart_putc (kxstr++) ;
}
}

The function vart_puts will not understand that the pointer passed to
it is a pointer to program memory.



Using Program Memory for Storage

progmem.h provides a function pgm_read_byte() that returns a byte
located at the pointer passed to it. Therefore, we can rewrite our
function as follows:

void uart_puts(char *str){
while(pgm_read_byte(str) != ’>\0°){
uart_putc(pgm_read_byte(str++));
}
}

Of course if you needed a function to read from both program memory
and from ram you would need two different named functions.



Using Program Memory for Storage

As mentioned before, the progmem.h library allows us to also store data
arrays.

static unsigned int LCD_font_table[] PROGMEM{
0xABCD,
0x1234,
0xDEAD,
0x9876

Since this data is 16 bits long, we can retrieve the data using the
progmem.h function read_pgm_word ().

To access the first element of the array, we could say:
pgm_read_word{&LCD_font_table[0])



