
Debouncing Switches

I Mechanical switches are one of the most common interfaces to a uC.

I Switch inputs are asynchronous to the uC and are not electrically
clean.

I Asynchronous inputs can be handled with a synchronizer (2 FF’s).

I Inputs from a switch are electrically cleansed with a switch
debouncer.

I What is switch bounce?
I The non-ideal behavior of the contacts that creates multiple electrical

transitions for a single user input.

in

t

t

Vth

0V

0V

out

Debouncing Switches

I Falling and rising edge switch bounce from a pushbutton switch

Debouncing Switches

I The problem is that the uC is usually fast enough to see all the
transitions

I uC acts on multiple transitions instead of a single one

I The oscilloscope traces showed bounce durations of 10-300us

I our mega128 uC runs at 62.5ns per instruction

I a 10uS bounce (short) is (1x10-5/62.5x10-9) 160 instructions long!

I a 100uS bounce could be sampled as a valid true or false 100s of
times

I results are incorrect behavior as seen by user

Debouncing Switches

I Characteristics of switch bounce:
I Nearly all switches do it
I The duration of bouncing and the period of each bounce varies
I Switches of exactly the same type bounce differently
I Bounce differs depending on user force and speed
I Typical bounce frequency is 100us-10ms

Specifications for Panasonic EVP-BD6C1A000 pushbutton switch

Debouncing Switches

I One possible solution - Analog filtering

I RC network filters out the rapid changes in switch output

I Choose R and C so input threshold is not crossed while input is still
bouncing

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

C1

0.1uF

R1
10k

S1

v5.0

R2
10K

U1

U1 is a schmitt trigger inverter

 similar to a 74HC14

RC filter is formed by R1,R2 and C1.

R2 also protects S1 from excessive current when S1 is closed.

R3 protects U1 from capacitor dumping current into input

pin when power is removed.

R3

470

in
out

10k

10k

v5.0

usage model

output

U1

U2

S1

in

t

t

Vth

0V

0V

out

Debouncing Switches

I Another solution would be to use a latch (MC14044)

I Logic gates lock change in 2tpd using a SPDT switch

I Both switch ($3.69) and chip ($0.38) are expensive

I Momentary click switches (AVR board) are ($0.12)

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

C1

0.1uF

R1
10k

S1

v5.0

R2
10K

U1

U1 is a schmitt trigger inverter

 similar to a 74HC14

RC filter is formed by R1,R2 and C1.

R2 also protects S1 from excessive current when S1 is closed.

R3 protects U1 from capacitor dumping current into input

pin when power is removed.

R3

470

in
out

10k

10k

v5.0

usage model

output

U1

U2

S1

Debouncing Switches

I Software solutions
I Need to minimize CPU usage and be independent of CPU clock speed
I Use constant defines in makefile to remove speed dependencies
I Don’t use interrupt pins, only periodic polling
I Don’t synchronously scan noisy devices
I Quickly identify initial switch closure (100mS max)

Debouncing Switches

I Count-based software solution

// source: Jack Gansel , "Guide to Debouncing"

// returns ’1’ once per button push , detects falling edge

uint8_t debounce_pulse () {

static uint16_t switch

state = (state << 1) | (! bit_is_clear(PIND , 2)) | 0xE000;

if (state == 0xF000) return 1;

return 0;

}

Which pass Value of state Return value

first pass after reset 1110 0000 0000 0001 return 0
second pass after reset 1110 0000 0000 0011 return 0
after 12 false passes 1111 1111 1111 1111 return 0
after 7 true passes 1111 1111 1000 0000 return 0
after 12 true passes 1111 0000 0000 0000 return 1
after many true passes 1110 0000 0000 0000 return 0
after 5 false passes 1110 0000 0001 1111 return 0

Debouncing Switches

I Solution based on digital 1st-order recursive low-pass filter

//Acts like RC filter followed by schmitt trigger

// continuous output like an analog switch

// 0.25=0x3F , 0.75=0xC0 , 1.0=0 xFF

int8_t debounce_cont (){

static uint8_t y_old=0, flag =0;

uint8_t temp;

// digital filter: y_old=x_new *0.25 + y_old *0.75

temp = (y_old >> 2); // yields y_old /4

y_old = y_old - temp; //(y_old *0.75) by subtraction

//if button pushed , add 0.25

if(bit_is_clear(PIND ,2)){ y_old = y_old + 0x3F;}

// software schmitt trigger

if((y_old > 0xF0) && (flag ==0)){ flag =1; return 1;}

if((y_old < 0x0F) && (flag ==1)){ flag =0; return 0;}

return (-1); //no change from last time

}

Debouncing Switches
I Behavior of the digital filter debouncer with schmitt trigger

3F
63

15

50

100

150

200

250

6F
111

93
147

6F
111

93
147

6F
111

93
147

AE
174

C2
194

D1
209

DC
220

E4
228

EA
234

EF
239

F3
243

F6
246

B9
185

CA
202

D7
215

E1
225

E8
232

ED
237

F1
241

First Order Digital Filter Debouncer Behavior

y_
ol

d

upper threshold
output

PIND, 2

lower threshold

Debouncing Switches

I Sometimes we want an output that is continuous for as long as the
switch contacts are in their active state. For example, the keys on
an electronic keyboard.

I Other times we want a momentary or pulsed output, such as a
button that increments the hour alarm on a clock.

I The first count-based debouncer (Gansel) gave a pulsed output.

I The digital filter algorithm gives a continuous output.

PUSHOFF

rising edge

output = 1output = 0

falling edge

PUSHED

output = 1

output = 0

debounce_cont = 0

alwaysdebounce_cont = 1

output = 0

IDLE WAIT

raw button push

pulsed output

continuous output

Debouncing Switches
I How would you convert between types of debouncer output?
I Use a state machine to get a pulsed output from a continuous

debouncer.

//state machine returns one pulse for each push and release

static enum button_state_type{IDLE , PUSHED , WAIT} state;

switch(state){

case(IDLE) :output =0; if(debounce_cont ()){ state=PUSHED ;} break;

case(PUSHED): output =1; state=WAIT; break;

case(WAIT) :output =0; if(debounce_cont ()){ state=IDLE; } break;

default : break;

}// switch
PUSHOFF

rising edge

output = 1output = 0

falling edge

PUSHED

output = 1

output = 0

debounce_cont = 0

alwaysdebounce_cont = 1

output = 0

IDLE WAIT

raw button push

pulsed output

continuous output

Debouncing Switches

I A state machine for continuous output from a pulsed debouncer.

I This scheme requires rising and falling edge detection.

//2 state state machine returns continuous output

static enum button_state_type{OFF , PUSH} state;

switch(state){

case(OFF) : if(debounce_fpulse ()){ state=PUSH;} break;

case(PUSH): output =1; if(debounce_rpulse ()){ state=OFF;} break;

default : break;

}// switch

PUSHOFF

rising edge

output = 1output = 0

falling edge

PUSHED

output = 1

output = 0

debounce_cont = 0

alwaysdebounce_cont = 1

output = 0

IDLE WAIT

raw button push

pulsed output

continuous output

