
Debouncing Switches

I Mechanical switches are one of the most common interfaces to a uC.

I Switch inputs are asynchronous to the uC and are not electrically
clean.

I Asynchronous inputs can be handled with a synchronizer (2 FF’s).

I Inputs from a switch are electrically cleansed with a switch
debouncer.

I What is switch bounce?
I The non-ideal behavior of the contacts that creates multiple electrical

transitions for a single user input.
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Debouncing Switches

I Falling and rising edge switch bounce from a pushbutton switch



Debouncing Switches

I The problem is that the uC is usually fast enough to see all the
transitions

I uC acts on multiple transitions instead of a single one

I The oscilloscope traces showed bounce durations of 10-300us

I our mega128 uC runs at 62.5ns per instruction

I a 10uS bounce (short) is (1x10-5/62.5x10-9) 160 instructions long!

I a 100uS bounce could be sampled as a valid true or false 100s of
times

I results are incorrect behavior as seen by user



Debouncing Switches

I Characteristics of switch bounce:
I Nearly all switches do it
I The duration of bouncing and the period of each bounce varies
I Switches of exactly the same type bounce differently
I Bounce differs depending on user force and speed
I Typical bounce frequency is 100us-10ms

Specifications for Panasonic EVP-BD6C1A000 pushbutton switch



Debouncing Switches

I One possible solution - Analog filtering

I RC network filters out the rapid changes in switch output

I Choose R and C so input threshold is not crossed while input is still
bouncing
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Debouncing Switches

I Another solution would be to use a latch (MC14044)

I Logic gates lock change in 2tpd using a SPDT switch

I Both switch ($3.69) and chip ($0.38) are expensive

I Momentary click switches (AVR board) are ($0.12)
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Debouncing Switches

I Software solutions
I Need to minimize CPU usage and be independent of CPU clock speed
I Use constant defines in makefile to remove speed dependencies
I Don’t use interrupt pins, only periodic polling
I Don’t synchronously scan noisy devices
I Quickly identify initial switch closure (100mS max)



Debouncing Switches

I Count-based software solution

// source: Jack Gansel , "Guide to Debouncing"

// returns ’1’ once per button push , detects falling edge

uint8_t debounce_pulse () {

static uint16_t switch

state = (state << 1) | (! bit_is_clear(PIND , 2)) | 0xE000;

if (state == 0xF000) return 1;

return 0;

}

Which pass Value of state Return value

first pass after reset 1110 0000 0000 0001 return 0
second pass after reset 1110 0000 0000 0011 return 0
after 12 false passes 1111 1111 1111 1111 return 0
after 7 true passes 1111 1111 1000 0000 return 0
after 12 true passes 1111 0000 0000 0000 return 1
after many true passes 1110 0000 0000 0000 return 0
after 5 false passes 1110 0000 0001 1111 return 0



Debouncing Switches

I Solution based on digital 1st-order recursive low-pass filter

//Acts like RC filter followed by schmitt trigger

// continuous output like an analog switch

// 0.25=0x3F , 0.75=0xC0 , 1.0=0 xFF

int8_t debounce_cont (){

static uint8_t y_old=0, flag =0;

uint8_t temp;

// digital filter: y_old=x_new *0.25 + y_old *0.75

temp = (y_old >> 2); // yields y_old /4

y_old = y_old - temp; //(y_old *0.75) by subtraction

//if button pushed , add 0.25

if(bit_is_clear(PIND ,2)){ y_old = y_old + 0x3F;}

// software schmitt trigger

if(( y_old > 0xF0) && (flag ==0)){ flag =1; return 1;}

if(( y_old < 0x0F) && (flag ==1)){ flag =0; return 0;}

return (-1); //no change from last time

}



Debouncing Switches
I Behavior of the digital filter debouncer with schmitt trigger
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Debouncing Switches

I Sometimes we want an output that is continuous for as long as the
switch contacts are in their active state. For example, the keys on
an electronic keyboard.

I Other times we want a momentary or pulsed output, such as a
button that increments the hour alarm on a clock.

I The first count-based debouncer (Gansel) gave a pulsed output.

I The digital filter algorithm gives a continuous output.
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Debouncing Switches
I How would you convert between types of debouncer output?
I Use a state machine to get a pulsed output from a continuous

debouncer.

//state machine returns one pulse for each push and release

static enum button_state_type{IDLE , PUSHED , WAIT} state;

switch(state){

case(IDLE) :output =0; if(debounce_cont ()){ state=PUSHED ;} break;

case(PUSHED ): output =1; state=WAIT; break;

case(WAIT) :output =0; if(debounce_cont ()){ state=IDLE; } break;

default : break;

}// switch
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Debouncing Switches

I A state machine for continuous output from a pulsed debouncer.

I This scheme requires rising and falling edge detection.

//2 state state machine returns continuous output

static enum button_state_type{OFF , PUSH} state;

switch(state){

case(OFF) : if(debounce_fpulse ()){ state=PUSH;} break;

case(PUSH): output =1; if(debounce_rpulse ()){ state=OFF;} break;

default : break;

}// switch
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