
Fuses and Lock Bits

The ATMega128 has several special memory areas

-Six lock bits which determine program memory features.
-Three fuse bytes which determine various hardware features
-Three bytes for device signature
-Four bytes for RC oscillator calibration (shared with device signature)

The six lock bits are broken down into:
-four BLB lock bits
-two lock bits for overall programming protection

The lock bits select where the SPM and ELPM are allowed to operate and
if the bootloader is allow to overwrite itself.

Lock bits are logic zero when programmed, one when not programmed

Fuses and Lock Bits

The Fuse bytes are the
-Extended Fuse Byte
-Low Fuse Byte
-High Fuse Byte

Extended Fuse Byte determines
-M103C (mega 128 predesessor) compatibility
-if watchdog Timer is always on

Fuses and Lock Bits

The Fuse bytes are the
-Extended Fuse Byte
-Low Fuse Byte
-High Fuse Byte

Extended Fuse Byte determines
-M103C (mega 128 predesessor) compatibility
-if watchdog Timer is always on

High Fuse Byte determines
-availability of OCD, JTAG, SPI downloading
-if oscillator options are available
-if EEPROM is preserved during chip erase
-boot block size
-if reset vector is application or bootloader address zero

Fuse bits are logic zero when programmed, logic one when not programmed
Fuse bits are inaccessible by application or bootloader programs
Fuse bits not effected by chip erase or at all if lock bit (LB1) is set

Fuses and Lock Bits
High Fuse Byte determines

-availability of OCD, JTAG, SPI downloading
-if oscillator options are available
-if EEPROM is preserved during chip erase
-boot block size
-if reset vector is application or bootloader address zero

Fuses and Lock Bits

Low Fuse Byte determines
-brownout detector trigger level
-startup time
-clock sources

Fuse bits are logic zero when programmed, logic one when not programmed
Fuse bits are inaccessible by application or bootloader programs
Fuse bits not effected by chip erase or at all if lock bit (LB1) is set

Fuses and Lock Bits

Fuse bytes can be read/written with avrdude interactively in terminal mode

avrdude -p m128 -u -c usbasp -t //unsafe option chosen (see manual)//unsafe option chosen (see manual)

avrdude: AVR device initialized and ready to accept instructions
avrdude: Device signature = 0x1e9702
avrdude: current erase-rewrite cycle count is 52 (if being tracked)
avrdude> d efuse
>>> d efuse //dump entended fuse//dump entended fuse
0000 fd

avrdude> d hfuse //dump high fuse//dump high fuse
>>> d hfuse
0000 99

avrdude> d lfuse //dump low fuse//dump low fuse
>>> d lfuse
0000 e1

avrdude> w efuse 0 0xff //write extended fuse//write extended fuse
>>> w efuse 0 0xff

avrdude> w hfuse 0 0x89 //wire high fuse//wire high fuse
>>> w hfuse 0 0x89

avrdude> w lfuse 0 0x2f //write low fuse//write low fuse
>>> w lfuse 0 0x2f

Fuses and Lock Bits

Fuse bytes (and memory) can be read/written with avrdude from the command line.

For example, when programming a Mega48 to run at 8Mhz, the low fuse needs
to be changed to 0xE2. It can be done like this:

sudo avrdude -c usbasp -p m48 -U lfuse:w:0xE2:m -v

"-U" indicates a memory operation,
"w" indicates a write
"lfuse" the location to perform the operation on
"0xe2" the hex value being written
"m" take the immediate value specified on command line
"-v" verbose mode

Multiple operations can be done simultaneously too:

avrdude -p m128 -u -U flash:w:diag.hex \
> -U eeprom:w:eeprom.hex \
> -U efuse:w:0xff:m \
> -U hfuse:w:0x89:m \
> -U lfuse:w:0x2e:m

Verifying from command line that flash memory is same as the file code.hex:
avrdude -p m128 -c <programmer_type> -U flash:v:code.hex \

See the avrdude manual for more details:
http://www.nongnu.org/avrdude/user-manual/avrdude.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

