
The Tile Hill Style Guide
–

 C Style Guide
for embedded systems

By

Chris Hills

First Edition 1.1
23 June 2002

Part of the QuEST series:- QA2

Hitex (UK) Ltd.
Warwick Uni Science Park Quest@phaedsys.org
Coventry, CV4 7EZ http://quest.phaedsys.org/
http://www.hitex.co.uk/
chills@hitex.co.uk

mailto:quest@phaedsys.org
http://quest.phaedsys.org/
http://www.hitex.co.uk/
mailto:chills@hitex.co.uk

QuEST.phaedsys.org page 2 of 55

QuEST.phaedsys.org page 3 of 55

The Tile Hill Style Guide
–

C Style Guide
for embedded systems

First Edition 1.1

23 June 2002
By

Eur. Ing. Chris Hills BSc, C. Eng., MIEE, MIEEE, FRGS
Copyright Phaedrus Systems 2001

The slides and copies of this paper (and subsequent versions) the

templates, any source code and the power point slides will be available at
www.hitex.co.uk or at

http://quest.phaedsys.org/, the author's personal web site.
quest@phaedsys.org

Many thanks to Paul Baker of Thames Valley Controls Ltd for proof

reading and the many helpful suggestions. www.tvcl.co.uk

The ART in Embedded Engineering comes
through Engineering discipline.

Quality Embedded Software Techniques

QuEST is a series of papers based around the theme of Quality embedded
systems. Not for a specific industry or type of work but for all embedded
C. It is usually faster, more efficient and surprisingly a lot more fun when

things work well.

QuEST Series

QuEST 0 Introduction & SCIL-Level
QuEST 1 Embedded C Traps and Pitfalls
QuEST 2 Embedded Debuggers
QuEST 3 Advanced Embedded Testing For Fun

Additional Information

 QA1 SCIL-Level

QA2 Tile Hill Style Guide
QA3 QuEST-C
QA4 PC-Lint MISRA-C Compliance Matrix

http://www.hitex.co.uk/
http://quest.phaedsys.org/
mailto:quest@phaedsys.org

QuEST.phaedsys.org page 4 of 55

QuEST.phaedsys.org page 5 of 55

Contents

1. Introduction..7

2.2 The Tile Hill Style Guide- History .. 8
2.3 Availability and templates ... 9
2.4 Errors and omissions... 9
2.5 Additional contributors.. 9

2 The Style Guide- Rational ... 11

2.1 General notes .. 11
2.2 Additional Changes from the first version 16

3 Version control and other tools .. 17

3.1 Lint & static analysis... 19
3.3 DA-C .. 20

4 The Tile Hill Embedded C Style Guide 21

4.1 Files ... 21
4.1.1 File naming .. 21
4.1.2 File names should be kept short .. 21
4.1.3 Header file names.. 21
4.1.4 Source files should be ASCII chars only..................................... 21

4.2 File name extensions .. 22
4.2.1 C/C++ File extensions... 22
4.2.2 Assembly files.. 22
4.2.3 Miscellaneous files... 22

4.3 Templates for files.. 23
4.3.1 Source File Template ... 23

1.1.1.1. File Information Block... 23
1.1.1.2. Other information ... 23

1.1.1.2.1. Include.. 24
1.1.1.2.2. Define ... 24
1.1.1.2.3. Global... 25
1.1.1.2.4. Prototypes .. 25

1.1.1.3. File EOF Marker ... 25
4.3.2 Templates for functions.. 27
4.3.3 Order of functions .. 27

1.1.1.4. Main function.. 28
4.3.4 Templates for Header files... 28

4.4 Braces and the One True Faith .. 30
4.5 Constants, Defines and Types... 31

4.5.1 Long constants ... 31
4.5.2 Hex constants... 31
4.5.3 Octal Constants.. 31
4.5.4 Const.. 32
4.5.5 Defines... 32
4.5.6 Types ... 32

QuEST.phaedsys.org page 6 of 55

4.6 Structures and Unions.. 33
4.7 Flow Control .. 34

4.7.1 Function calls in control clauses... 34
4.7.2 Null Statements .. 34

4.8 Comments... 34
4.8.1 Nested comments .. 35
4.8.2 Commenting out code ... 35
4.8.3 Comment density... 35

5 Source Code Templates.. 37

5.1 Source Safe Templates... 39
5.2 MKS Source Integrity Templates ... 42
5.3 PVCS Templates ... 44
5.4 Clear CASE Templates... 46
5.5 Component Software's RCS... 48

6 Appendix B Lint and Example Program 50

7 References .. 54

QuEST.phaedsys.org page 7 of 55

The Tile Hill Style Guide
–

C Style Guide
for embedded systems

1. Introduction

When writing C there are two types of guide available and programmers
often confuse them. Firstly the style guide which will be described here.
Style dictates source code layout and should ensure a uniform and more
readable format. A uniform style makes errors and non-conformance stand
out. It is this word that causes the problems "conformance"…. Free thinking
programmers hate it. However for Engineers it is a cornerstone. This
Guide is for Software Engineers. Many in embedded engineering come
from a disciplined electronic engineering background and are used to
working to strict regulations for many things. They understand that:-

The ART in Embedded Engineering
comes through

engineering discipline.

This style guide is not about safe use of C as such. The other type of guide
covers the safe use of C, normally via a [safer] subset of C. This will
restrict which parts of C can and cannot be used. In some cases it lays
down very strict lines about how a particular feature is to be used. This
type of guide usually has less resistance to being used because there is a
clear reason for the rule. Style guides are just that. They have no solid
engineering reason to do it this way instead of another way. The problem
occurs when everyone has his or her own system….

For the safe use of C there are many, often narrow industry specific, guides
available. However, there is one which is generic embedded and has
escaped into widespread use. The MISRA-C guide (or to give it it's full
title:- The Motor Industry Software Reliability Association Guidelines For
The Use Of The C Language In Vehicle Based Software). MISRA-C is
available from MIRA (and also from Hitex UK). MISRA-C is a very readable
set of rules that make sense for most C programming, embedded or not.

QuEST.phaedsys.org page 8 of 55

2.2 The Tile Hill Style Guide- History

The Tile Hill style guide has been produced not because it is "The Best” or
“Only Way" but because every time I mentioned style guides we were
asked if we had one people could use.

When we told people to search the net, look in libraries etc they usually
said, "Can you send us the one you use?" Well, you asked for it! This is it,
the Style Gulde I use at Hitex UK and Phaedrus Systems.

It has been developed over the last 12 years of software Engineering in
several small, medium and large companies most working to or at
ISO9000. It has been used on projects as diverse as an 8051 smart card
through to a multiprocessor communications system that was based on
Sparc, PowerPC and 68040 over time and also had some i486 content….

To get the folk law out of the way first: It is called the Tile Hill guide
because at the time of it's first publication to a wider audience (I.E. Not to a
project I was working on) I was working at Hitex UK. in Coventry.

Hitex (UK) is close to Tile Hill in Coventry UK which I have to drive through
it twice a day. Also the title is a play on the legendary “Indian Hill
Recommended C Style and Coding Standards” from AT&T Bell labs. My
copy is Version 6 dated 1990.

Indian Hill was
one of the famous
Bell Labs. Tile
Hill has no such
distinction. The
photo shows the
Tile Hill
Newsagents who
do a fine range of
newspapers,
magazines,
greetings cards,
sweets and soft
drinks. . They do
not (as far as I
know) have any

involvement in software or embedded Engineering

Note:- I do not claim that the Tile Hill Guide is better or replaces the Indian
Hill document. I just produced my own guide to the style I use because
people asked for one. However whilst the Indian Hill guide is generic the
Tile Hill Guide is aimed at embedded systems. I am not sure how much
difference that makes if any.

QuEST.phaedsys.org page 9 of 55

2.3 Availability and templates

The Tile Hill Guide is freely available in electronic form, with all the source
code templates from http://www.hitex.co.uk/ and
http://quest.phaedsys.org/ At the time of writing the Indian Hill guide was
available from at least ten sites. Do a search on "Indian Hill Labs". Though
all the ones I found were dated 1990.

Jack Ganssel also has an embedded project guide available from
http://www.ganssle.com/.

2.4 Errors and omissions

If you find any errors or omissions, have any constructive criticisms, or
want to see something added contact the author at: -
mailto:quest@phaedsys.org New versions will be posted to
http://quest.phaedsys.org/

2.5 Additional contributors
At this point I should like to thank some of the people who have spotted my
errors and omissions or made helpful suggestions and changes.

Paul Baker of Thames Valley Controls Ltd for proof reading and the
many helpful suggestions. www.tvcl.co.uk

John Johnson of DALSA Corporation, Canada, for some ideas and
sources that found their way into aspects of this series.
http://www.dalsa.com/

Karsten Stegelmann Product Development Engineer of
 VAISALA Impulsphysik GmbH Germany for his helpful suggestions of
the SCOPE define in header files (http://www.vaisala.com/)

http://www.hitex.co.uk/
http://quest.phaedsys.org/
http://www.ganssle.com/
mailto:quest@phaedsys.org
http://quest.phaedsys.org/
http://www.dalsa.com/
http://www.vaisala.com/

QuEST.phaedsys.org page 10 of 55

QuEST.phaedsys.org page 11 of 55

2 The Style Guide- Rational

2.1 General notes

The idea behind the style guide and the reason they are misused is free
will. Many years go (1950's to 1960's) computer programs were written on
punched cards with 80 columns. The layout of each line was fixed as was
whole sections of the program..

This card is from Douglas W. Jones
A History of punched cards [Jones],
which provides a fascinating
history to early computer systems.

Computer languages developed

from punched cards to initially typewriter like terminals and then onto VDU
screens. Computer languages continued over from punch cards and
required that commands start in certain columns and in a particular form
COBOL or FORTRAN for example.

 MMAX = 1
 90 IF (MMAX-N) 100, 130, 130
 100 ISTEP = 2*MMAX
 DO 120 M=1,MMAX
 THETA = PI*FLOAT(ISI*(M-1))/FLOAT(MMAX)
 W = CMPLX(COS(THETA),SIN(THETA))
 DO 110 I=M,N,ISTEP
 J = I + MMAX
 TEMP = W*DATA(J)
 DATA(J) = DATA(I) - TEMP
 DATA(I) = DATA(I) + TEMP
 110 CONTINUE
 120 CONTINUE
 MMAX = ISTEP
 GO TO 90
 130 IF (ISI) 160, 140, 140

Example of Fortran.

As computers developed so the languages developed away from the
punched card and there was more freedom of layout.

C was developed in the 1970's when VDU screens were common and new
systems did not use punched cards. Therefore C was developed as a free
format language. There is no fixed layout as regards columns. (There are a
few exceptions to do with the pre-processor)

One white space has the same weight as 50 white spaces... This assumes
that you are using black on white. For those of you using DOS screens it is

QuEST.phaedsys.org page 12 of 55

black spaces (in the case of Joe it is lilac spaces). Effectively, this means
that the programmer is free to layout the source code as he or she sees fit.
What is more there is no technical reason why the programmer has to keep
their style constant. Even from line to line.

Many programmers will complain that they can use their own style and
anything else imposed is an infringement of Civil Liberties and the end of
Civilisation As We Know It! Most Project managers have too many other
things to worry about. As long as the code compiles (reasonably1) clean
they are happy.

The problem comes when you have several programmers working on one
project or worse still several programmers on the project are changed….
The original "geniuses" move on and someone else has to do the
maintenance. This is when you end up with many conflicting styles. Often
within the same source file! This is where C learnt its reputation as being a
read only language.

As the army discovered a long time ago it is easier to count and control a
group of people if they are standing in lines and sets of lines than if they
are just standing in a group. As an example (do this in private or you will
thought of as very sad , tip a box of paper clips on to your desk. Try and
count them without moving them. Not easy is it. You could could them by
moving them from one pile to another. However if you loose count you
have to start again. Now try putting them it to rows of 5 with 5 rows to a
block. Then all you have to do is count the blocks. It is also very easy to
see if there is a paper clip missing in any row or block.

Likewise when the source code is laid out in a standard way is it far easier
to spot anomalies and errors.

I worked on one fun project involving six nationalities on three continents.
One of my team sent me an email after doing a review on another teams
code:- (N.B. time how long it takes to read what this says)

th eo t
her tea mRe Gua
R d so ru c
E Co DeLay
O T A Sana
Rtf or M

It took me a while to work out what it actually said was:-
ThEoThErTeAmReGuArDsOrUcEc0DeLaYouTaSaNaRtFoRm

1 Reasonably? For some this is only “some” warning, others turn off the compiler
warnings and only look at errors….

QuEST.phaedsys.org page 13 of 55

Sorry, I meant “theo tert eamr egua rdso ruce code layo tasa nart form”
or to restrict my civil liberties and stifle my creative spirit; “The other team
regard source code layout as an art form”. I am sure that you instantly
spotted the ‘0’ (zero) in place of the O and the misspellings. In fact now I
come to look at it, the first 3 versions have different errors but I am sure
that was obvious to you!

That illustration should have convinced you, even if it is only the time
saving on reading it, that a uniform style to a set convention is a good idea.
It makes the source easily readable to all with the likelihood of fewer
errors.

Another far more dangerous example of code layout causing problems is
one that actually came originally from a problem in a rapid transit system
in a major city.

interlock = OFF;

if(TRUE == stop)
 flag = ON;
 interlock = ON;

if(ON == interlock)
 open_doors();
else
 apply_brakes();
 sound_alarm();

What it should do is only open the doors if stopped else apply brakes and
sound alarm but not open doors. This code will in fact, obviously, always
open the doors and sound the alarm but not apply the brakes.

I insisted that all code produced with teams I am involved with rigidly
adhere to the principal of always using braces were possible, even on one
line while or if statements as above. This may sound a bit draconian
despite the example above but I have good reason.

I instigated this rule after three of my team spent two days trying to trace a
bug caused by a two line if statement where only one line was actually
inside the if. It caused an error some distance from the 'if' statement and
was not immediately linked to the problem. When the if statement was
considered all three engineers glancing at it saw a correct if statement and
mentally put braces round the two statements. The mind saw what it
thought should be there. The human mind is good at filling in the blanks
with what it thinks is right. Ask any married person!

In this case the error was combined with another similar “non error” to
produce a real problem much further away. The reason for c style guides is
to make the code uniform so reducing the silly errors like this. There is no

QuEST.phaedsys.org page 14 of 55

right or wrong style, as long as it is consistent, but some have a tendency to
reduce errors more than others.

The previous code example (according to my pedantic formatting) is
actually the following:

interlock = OFF;

if(TRUE == stop)
{
 flag = ON;
}
interlock = ON;

if(ON == interlock)
{
 open_doors();
}
else
{
 apply_brakes();
}
sound_alarm();

Whereas what was meant was:

interlock = OFF;

if(TRUE == stop)
{
 flag = ON;
interlock = ON;
}

if(ON == interlock)
{
 open_doors();
}
else
{
 apply_brakes();

sound_alarm();
}

By pedantically putting the braces in (taking a couple of seconds) we could
have saved about 5 man-days of effort!

As mentioned previously this problem was actually based on a real
problem on a rapid transit system in the Far East though programmers in
the Midlands wrote the code! It actually made it as far as the test runs. The
bug was only found by accident after another "freak" bug triggered the
events for this one to become visible.

QuEST.phaedsys.org page 15 of 55

This should convince you that a uniform style is a good idea…. Well your
troubles have just begun! Which style of layout to use? Everyone has their
favourite and can see no reason why they should change. It is one of the
most contentious parts of any style guide.

There are several recognised styles. All are equally good and bad. In
personal order of preference from top to bottom with my favourite at the
top.

If(style 1 Exdent)
{
 statement;

statement;
}

If(style 2 Indent)

{
 statement;

statement;
}

If(style 3 K&R){

statement;
statement;

}

If(style 4)
{statement;
 statement;
}

As a final thought: Your source code could land you in prison! Currently
you have to show "due diligence" in anything you produce. Thus if there is
a court case over something to do with a system containing your software
you may be called upon to show that you exercised "Due Diligence" in
constructing the software. The claimants are likely to have experts who
will explain what an ideal software development process should be.

 A uniform style in programming along with a coding standard has long
been recognised as "Best Practice" in the software industry. You can be
sure that the insurance company for the claimants will bring it up
somewhere. They will ask "an you demonstrate that you took due
diligence in constructing this software?"

Of course as a director or manager you may have more pressing problems
if the Corporate Manslaughter Bill goes through. The stakes are getting
higher. Given that software produced to a consistent style using a sensible
coding standard using the correct support tools has consistently been

QuEST.phaedsys.org page 16 of 55

shown to get to market faster with fewer bugs there is no reason (legal or
commercial) not to do it.

There is a fuller discussion of this topic in Embedded C: Traps and Pitfalls
at www.phaedsys.org and the Home office documents are available at:

http://www.homeoffice.gov.uk/consult/invmans.htm

2.2 Additional Changes from the first version

Karsten Stegelmann Product Development Engineer of VAISALA
Impulsphysik GmbH Germany http://www.vaisala.com made some
helpful observations on the defines used in header files in section "4.3.4
Template for Header files" as below:-

I defined in the file filename_M and in the header file it was used for
explicitly defining extern in all but the "home" file.

#ifdef CO0001_M
 void Application_Block(void);
#else
 extern void Application_Block(void);
#endif

However Karsten suggested the following method:

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE void Application_Block1(void);
SCOPE void Application_Block2(void);
SCOPE void Application_Block3(void);

Whilst it is functionally the same thing it is more elegant and reduced the
number of places the function prototype appears from three to two. This
reduces the change of typographical or cut and past errors.

Karsten goes on to point out that this method can be used on Global
variables as well. I have amended the Tile Hill Guide to reflect the
suggestions.

QuEST.phaedsys.org page 17 of 55

3 Version control and other tools

Version Control is a much under used method for getting bug free code.
For a full explanation see Embedded C Traps and Pitfalls [Hills]. In
simple terms version control means keeping track of every version of a
source file. This seems a little daunting and more likely to introduce more
errors. However if implemented properly it can drastically reduce errors
and save a lot of time.

There are many ways of doing version control. The simplest is to archive

directories of source code. The next
step is one of the many version control
programs. These are a form of database
program. These programs make it
possible to retrieve any version of the
source code either by specific version
or by using labels whole builds can be
retrieved at the click of a mouse.

This can save much time hunting around
for old versions and is also extremely
useful when a new set of mods go wrong
and you have to go back to a known
good version.

One of the more useful features of most commercial VCS packages is
"keywords" and "keyword expansion". Key words can automate much of
the documentation in source files. Essentially when a VCS keyword is
placed in a source file the VCS program will expand the keyword with
specific information such as date, time, file-name user name and even file
history.

For example the following file header block

/***
** $Workfile: $
** Name: Application Block
** Copyright :Keil (uk) 1999
** $Author: $
** $Revision: $
**
** Analysis reference:123/ab/45678/001 5.6
** Input Parameters: NONE
** Output Parameters: NONE
**
** $Log: $
**
** End of history
**/

will automatically have the keywords expanded when the file is put in (I.E.
a version saved) and then taken back out to work on again.

QuEST.phaedsys.org page 18 of 55

/***
** $Workfile: U1CO0001.C $
** Name: Application Block
** Copyright :Keil (uk) 1999
** $Author: Chris Hills$
** $Revision: 1.1 $
**
** Analysis reference:123/ab/45678/001 5.6
** Input Parameters: NONE
** Output Parameters: NONE
**
** $Log: C:/ENG/KOS2/A2C001.C_V $
**
** Rev 1.1 06 May 1998 16:48:28 HILLS_CA
**Issued for review
**
** Rev 1.0 01 Apr 1998 13:09:02 HILLS_CA
**initial version
**
** End of history
*/

The good news is that the users cannot alter the comments above in the key
word text. For example it I changed the history section the next time the
file is pulled out the VCS will recreate the original text. The VCS
administrator can change the history comments in the VCS but it is far
easier to do it right the first time!

Incidentally one thing you should remember… it is not only the source
code that needs version control. Test scripts, programs, make files and
even the tools may need version control

There are several free version control programs about principally RCS,
which is part of most Unix implementations. I have a PD DOS version.
However a well documented (and used) manual version you do yourself,
I.E. history logs, archive directories and back up to CD ROMs etc may be
all you need.

It should be noted that a well-organised file system will save a lot of time
and effort and makes a lot of sense in pure commercial terms never mind
the engineering arguments. Especially if you build up a library of reusable
components and use them in many versions of software.

Note:- Version Control Systems (VCS) are also known as Revision Control
Systems (RCS). It is also sometimes referred to as Configuration
Management System. In all cases System is often replaces with the word
Software when talking about the control system software … Sometimes it is
referred to as Software VCS (SVCS). The programs are often called VCS,
RCS, SCCS depending where you first started to uses them.

QuEST.phaedsys.org page 19 of 55

3.1 Lint & static analysis

Lint is a static analysis tool. It is like a spelling and grammar checker for C.
It will pick up basic indentation, globals that could be local, misuse of
pointers, loss of precision and many other dubious uses of C. Static analysis
will analyse source code without a compiler. This means that it can check in
complete and un-compliable source.

Lint was the first and has been around since 1979 it is a command line tool
that was intended to be run as part of the compiler chain in the make file.
These days it will integrate into most IDE's.

It should be stressed that static analysis is recommended by virtually every
C and C++ style and coding standards since the original Lint was created
by the same team that put C and Unix together in 1974. Denise Ritchie in
his paper: The Development of the C Language says:

Although the first edition of K&R described most of the rules that brought C’s
type structure to its present form, many programs written in the older, more
relaxed style persisted, and so did compilers that tolerated it. To encourage
people to pay more attention to the official language rules, to detect legal but
suspicious constructions, and to help find interface mismatches undetectable
with simple mechanisms for separate compilation, Steve Johnson adapted his
pcc compiler to produce lint [Johnson 79b], which scanned a set of files and
remarked on dubious constructions.

It is not a case of if you should use static analysis but which tool you will
use!

Why use static analysis? The graph below should give some indication as
to the cost of finding bugs. The closer to the point where they start the
better.

There are many tools (starting with Lint) going up to 10,000 £ or $ with
extensive rules and templates many that can be made to test for house
coding standards and styles. See Appendix B.

The simplest and easiest static analyser to use (and also the least
expensive) is Lint. There are several free and public domain ones about.
The first commercial one is PC-Lint at just over £100, which comes
complete with configuration files for the majority of the worlds embedded
C compilers. Which saves hours of setting up.

After that the sky is the limit which is often not the case for some
embedded aerospace projects. Generally the more expensive the tool the
more it will do, the deeper it will hunt and the better the graphical user
interface.

QuEST.phaedsys.org page 20 of 55

3.3 DA-C

The program Development Assistant for C (DAC) is a wonderful tool where
there is a lot of legacy code that needs to be brought up to standard. It will
produce, from the source code, complete, commented, function flowcharts
and program structure charts, as well as data structure charts all of which

can be cut and pasted into
your documentation.

Whilst not part of a style guide
it can be very useful in re-
documenting legacy projects
where the original documents
and design cannot be found.
It too has a static analyser but
it is not as powerful as lint.
This makes it ideal for a first
pass over legacy code before
documenting.

One of my tests for
commenting is to run DAC
over the code and see if the
flow charts make sense. The
boxes are automatically
completed using the
comments in the code. Where
there are no comments the
word "CODE" is inserted. If
the automatically generated
flow chart does not make
sense then the code had
better be well constructed
using defines and intuitive
variable names.

As of summer 2002 DAC is automatically able to create documentation from
the source code to IEEE 1016. It generate structure charts, tables of
parameters and module/function information all with section numbering,
contents and title page. The areas you have to complete contain
instructions in a different colour.

code

read
character

true

false
if

decrement
count

and line
pointer

echo
backspace

true

falseprocess
backspace

ignore
Control S/Q

echo and
store

increment
line pointer

and count

true

false
if

true false
if

true

false

check limit
and line
feed

mark end of
string

getline
Line Editor

QuEST.phaedsys.org page 21 of 55

4 The Tile Hill Embedded C Style Guide

This style guide should be read in conjunction with a suitable coding
standard such as MISRA-C

This style guide should be used as part of a unified software
development system. See Embedded C: Traps and Pitfalls [Hills] and
the SCIL-Level Guide

A style guide is there to make the source readable. Coding standards
make the code safer. Other tools make the project safer

This guide should be used for ALL software on the project. Exceptions are
standard third party libraries. Where third party source is developed for
the project it should comply with this guide and all of the project standards.

4.1 Files

4.1.1 File naming
File names shall not contain spaces. Whilst most host operating systems
can now handle spaces in file names many of the tools whose roots are in
DOS do not. The same holds true for directory paths and spaces should
not be used in directory names.

4.1.2 File names should be kept short
The eight. three configuration for files is now a restriction of the tools rather
than host operating systems. However as many tools still work to this
format it is advisable to stay with it. In any event file names should be less
that 16 alphanumeric ASCII characters.

4.1.3 Header file names
Header file names for header files containing function prototypes or
defines for a particular source file should reflect the name of the source file
they belong to. Header files should not use the name of any known
standard library header file regardless of whether the library header files
are being used or not.

4.1.4 Source files should be ASCII chars only
Source files should only contain printable ASCII characters.
 This means that source files cannot be written in a word processor as a
*.doc file. The only permitted exception is the EOF (End Of File) marker.
Note this can cause problems if moving between operating systems such as
VMS, Windows, MAC and Unix.

QuEST.phaedsys.org page 22 of 55

4.2 File name extensions

4.2.1 C/C++ File extensions

C/C++ File extensions shall follow the table below except where tools
used require different extensions. Extensions should be up to three alpha
characters.

C source files *.c
C header files *.h
C++ source files *.cpp
C++ header files *.hpp

4.2.2 Assembly files

Assembly files may have to use extensions required by the tool chain.
Where this is not the case the following shall apply

8051 *.a51
251 *.a51
166 *.a66

 Z80 *.a80
 X86 *.a86

Any other family should follow a similar pattern

4.2.3 Miscellaneous files.

File extensions shall follow the table below except where tools used
require different extensions. Extensions should be up to three alpha
characters.

Object files *.obj
Libraries *.lib
OMF files *.omf
Elf files *.elf
List files *.lst
Map files *.map

 Make files *.mak
 Batch files *.bat

Intel Hex files *.hex
S Rec files *.mot

QuEST.phaedsys.org page 23 of 55

4.3 Templates for files

All source code is held in a number of files. These files should be laid out
in a standard manner. The easiest way of doing this is to use templates for
the file as a whole, the functions within it and the header files.

Much of the work involved can be automated using Revision Control
Software (RCS). The version shown in the text is a manual version. The
appendices contain versions of the templates for MS Source Safe, PVCS
Version Manager, MKS Source Integrity and Clear Case. These templates
will also be available from http://www.phaedsys.org

4.3.1 Source File Template

This should be a standard template used for all source code developed on
the project. It is not required to re-engineer any third party source such as
libraries. Any third part source developed for the project should use the
templates.

1.1.1.1. File Information Block
These files should have an information block that conveys information to
the reader. This information should be:

The name of the file.

1 The name of the application or project *
2 The initial author *
3 The copyright
4 The analysis or design reference
5 The current revision*
6 The change history.*

The items marked * can usually be supplied automatically by the VCS . The
copyright block will usually be insisted upon and supplied by the
company. It is usually the only part of the software process they take any
note of!

1.1.1.2. Other information

The source file will contain logical sections. Functions are covered later.
The file will start with the File Information block as detailed above.
Following the FIB shall be the header files. The section shall start with a
single line comment using * across the whole page. On the right hand end
of the comment then the name of the section shall be placed with the
section name at the right hand end of the comment. The case may be
upper, lower or title case but must be consistent across the project.

/*** Section Name */

The comment shall be full width of the standard listing paper when printed.
This may be modified to the maximum width before any wrapping or loss

QuEST.phaedsys.org page 24 of 55

of text on screen or printer. In any even all the lines must be uniform. The
sections shall be in the order described in the following sections.

1.1.1.2.1. Include

/*** Include */

On the far right shall be the word "Include" to assist with locating the
section in code reviews.

The header files shall be included in the following order

#define CO0001_M
#include <system.h>
#include <third-party-sw.h>
#include <project.h>
#include "local.h"
#include "ownheader.h"

The line #define CO0001_M is used with the files own header file. This
permits the correct definition of local and external defines, prototypes etc.
see section on header file templates.

Note it is not permitted to include a *.c file at any time.

Absolute paths may not be used. In some third party libraries that install to
include/libX where include is the standard compiler library directory the
following is permitted

#include <./libX/third-party-sw.h>

1.1.1.2.2. Define

The defines section shall be marked as follows with the word "defines" at
the right hand end of the comment:-

/*** Defines */

#define name value
#define names value
#define named value

Defines should be spaced with tabs into columns. This
enhances readability.

QuEST.phaedsys.org page 25 of 55

1.1.1.2.3. Global

The Globals section shall be marked as follows with the word "Globals" at
the right hand end of the comment

/*** Globals */

uint8_t count = 0;
int8_t flag_one = 0;

unit16_t motor_one = 0;
int16_t error_rate= 1;

As with defines the declarations should be tabbed into columns. This
enhances readability.

There should only be one declaration per line.

Types should be grouped logically, I.E. 8 bit, then 16 bit etc or by use. All
the globals relating to a particular function.

1.1.1.2.4. Prototypes

The Prototypes section shall be marked as follows with the word
"Prototypes" at the right hand end of the comment.

Only static or local function prototypes shall be permitted in this section.
Externally visible prototypes shall be in a header. Therefore all prototypes
in this section shall start with the C keyword "static"

/** Prototypes */

static void function(unit_8 variable)

Functions shall be fully specified.

1.1.1.3. File EOF Marker

Each file shall end with an End Of File marker or comment giving the name
of the source file.

/**/
/*********** End of $Workfile: CO0001.C $ ******/
/**/

QuEST.phaedsys.org page 26 of 55

Example Template

/***
** $Workfile: CO0001.C $
** Name: Application Block
** Copyright :Phaedrus Systems 1999
** $Author: Chris Hills$
** $Revision: 1.1 $
**
** Analysis reference:123/ab/45678/001 5.6
**
**
** $Log: C:/ENG/caos/C00001.C_V $
**
** Rev 1.1 06 May 1998 16:48:28 HILLS_CA
**Issued for review
**
** Rev 1.0 01 Apr 1998 13:09:02 HILLS_CA
**initial version
**
*/

/*** Include */
#define CO0001_M

#include < system.h>
#include < thirdpartysw.h>
#include " project.h"

/*** Defines */

#define name value
#define name value
#define name value

/*** Globals */

/** Prototypes */

static void function(void)

/** Main */

void main(void)
{

}

/***/
/*********** End of $Workfile: CO0001.C $******/
/**/

QuEST.phaedsys.org page 27 of 55

4.3.2 Templates for functions

The file template should give the developer all the information on where
the file started and how it got to its current state. The VCS in this case
automatically puts in the history block. Where a VCs is not used it should
be manually maintained. This should include any additional functions
added (or removed) after the initial build.

Each function should also have a simple comment block giving the purpose
of the function, the input and output parameters. Like the main file
information block, where appropriate, the reference to the design or
requirements should be included.

Only in exceptional cases should the function be fully documented (e.g. the
description of algorithms) in the function template. This information should
be in the documentation.

The function template shall start with a full width comment of the same
length of the other comments in use. The function name shall be inserted

/** Convert_One */
/* Name: Convert_one
**
** Purpose: Converts Fahrenheit to Celsius
**
** Design reference: abd_123-abc
**
** Input Parameters: Temperature in Fahrenheit
** Permitted range: -20 to 200
**
** Return Parameter: Temperature in Centigrade.
**
*/

uint_8 convert_one(Unit_8)
{
 …..

Where applicable ranges should be given, In this case the input Fahrenheit
range permitted and the output range supplied.2

Main is, as always, a special case. In a self-hosted system main will not
have any parameters or return values. It's function is clear therefore the
second descriptive comment block is not required.

4.3.3 Order of functions

The functions shall be in top down order. In all source files the functions
externally callable shall be at the top of the file. The most significant
external function at the top of the file.

2 Had this simple rule been applied to a project a multimillion-pound
rocket might have flown a bit longer than 29 seconds!

QuEST.phaedsys.org page 28 of 55

The functions shall then follow in the order in which they are called in main.
Static functions shall be last. Where possible all functions shall be lower in
the file than the function that called it.

1.1.1.4. Main function

There shall be a function called main which shall be the first C function that
is run after the start-up assembler. Main shall be the first function in it's
source file but does not require a prototype.

In self-hosted environments main shall have the prototype:

void main(void)

Note: In strict ISO C in self-hosted environments "main" is not required to
be called "main". It can technically be called anything you like. However
99% of the worlds debugging tools look for "main".

4.3.4 Templates for Header files

Header files shall contain function prototypes for functions that are not
static and must be visible outside their home source file.

The template shall start with a full width single line comment of *'s

The File information block shall contain the following information:-

Name of the file*
Copyright
Author or team *
Revision or version number *
Reference to design or analysis document
History log*

The items marked * should be available automatically from the VCS.

One item that can also be added is the target CPU or compiler system that
was used, also the intended crystal speed. This is more relevant where the
header file is to be used when it's source file is only available as an object
file, as in the case of a library function.

The end of the file shall have a single line EOF comment that includes the
name of the file.

QuEST.phaedsys.org page 29 of 55

NOTES:-
This header files contains

#ifndef CO0001_H
#define CO0001_H

#endif /*end guard */

This permits only one inclusion of the header file and stops re-definitions.
This should be part of your coding standard. The other set of defines

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE void Application_Block1(void);
SCOPE void Application_Block2(void);
SCOPE void Application_Block3(void);

Are used with a #define in the files home source file #define CO0001_M
that is above the include section to permit the correct declaration of
externs

/**/
/*
** $Workfile: CO0001.H $
**
** Copyright Phaedrus Systems Ltd
** Author: Chris Hills
**
** $Revision: 1.1 $
**
** Analysis reference: ab2-123-1.2.4
** Compiler : Keil C51
** Target : 8051/Fa
**
** $Log: G:/SHARED/ENG/caos/CO0001.H_v $
**
** Rev 1.0 01 Apr 1998 13:19:28 HILLS_CA
** Initial Version
*/

#ifndef CO0001_H
#define CO0001_H

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE void Application_Block1(void);

/***** END of $Workfile: CO0001.H $ ************/

QuEST.phaedsys.org page 30 of 55

4.4 Braces and the One True Faith

There are several styles for the placement of braces, K&R, indent and
extent. The rule is consistency. The preferred method shown here is
extent.

If(clause)
{
 statement;

statement;
}

while(clause)
{
 statement;

statement;
}

for (init; until; step)
{

statement;
statement;

}

Nested if, whiles etc should be as follows

If(clause)
{

while(clause)
{

 statement;
statement;

}/*end while*/

 statement;

statement;
}/*end if*/

NOTE some old libraries and some tools may require K&R
style

NOTE the use of /*end if */ and /*end while */ These are useful where
there are nested sets of braces. In multiple nested ifs and while's this
should be extended to more descriptive markers such as:

/* end while count */

or

/* end if flag true */

QuEST.phaedsys.org page 31 of 55

4.5 Constants, Defines and Types

Magic numbers or literal numbers in C shall not be permitted. Defines or
Const shall be used. There is a subtle difference between a const and a
define. A define is a textual replacement, for example:

#define TRUE 1

Wherever TRUE is found in the source (but not in comments) it will be
physically replaced by a 1. With a const a type is also required e.g.

const uint8_t TRUE 1;

The difference is that the const takes up physical space but when
debugging it will show up as "TRUE " (with type information) where as the
define will show up as 1 with no other information. In an idea world consts
would be used but in embedded systems memory is usually at a premium.

Note this should not be taken to extremes.

Where MAX_STRING = 250 the following shall be permitted:-

Uint8_t output_buffer[MAX_STRING+1]

Where an additional byte is required for the null terminator. However the
following and all similar are prohibited:

#define ONE = 1
const uint8_t ONE = 1;

Exceptions would be for S-Boxes in DES routines.

4.5.1 Long constants

Long constants shall be written using a capital L suffix NOT a lower case l as
a lower case l can be confused with a 1. Thus 121212 would be written:

 #define name 121212L

4.5.2 Hex constants

Hexadecimal constants shall be used for all bit masks and where bit
patterns are important. They shall be written using a lower case x and the
hexadecimal letters (A, B, C ,D, E, F) in upper case. Thus 0f would be
written :

 #define name 0x0F

4.5.3 Octal Constants
Octal constants should not be used.

QuEST.phaedsys.org page 32 of 55

4.5.4 Const

A const shall be used on any values that shall not change during the
lifetime of the program.

This will include parameters passed to functions where the parameter will
not be changed in the function e.g.

Uint8_t function(const unit8_t temperature);

4.5.5 Defines
Define shall be used on any values that shall not change during the lifetime
of the program.

Defines shall be in UPPER-CASE

4.5.6 Types

Types should be completely specified. This includes signed and unsigned
types. Types should also have their size fully specified.

 Some machines have more than one
possible size for a given type. The size
you get can depend both on the
compiler and on various compile-time
flags. The following table shows ``safe''
type sizes on the majority of systems.
Unsigned numbers are the same bit size
as signed numbers.

Unless a short is both larger than a char and smaller than an int. short
should not be used. I.E. short may be used where

char == 8 bits
 short == 16 bits
 int == 32 bits
 long == 64 bits

In order to ensure portability and that the correct types are used ISO C
defines the following types definitions to be used

int8_t uint8_t

Type Minimum
Bits

No
Smaller
Than

char
short
int
long
float
double
any *
char *
 void *

8
16
16
32
24
38
14
15
15

char
short
int

float

any *
any *

QuEST.phaedsys.org page 33 of 55

int16_t uint16_t
int32_t uint32_t
int64_t uint64_t

These should be used in a header file as follow (example for an 8 bit
architecture).

typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef signed int int16_t;
typedef unsigned int uint16_t;
typedef signed long int32_t;
typedef unsigned long uint32_t;

Note the use of tabs to keep the typedefs in columns.

4.6 Structures and Unions

 Structures shall not be declared in a nested form.

Struct name
{
 uint8_t size;
 uint8_t number;
 int16_t speed;
 int16_t direction;
 struct part
 {
 uint8_t rate1;
 uint8_t rate2;
 int16_t climb1;
 int16_t climb2;
)parts;

};

Each structure should be declared separately as follows:

struct part
 {
 uint8_t rate1;
 uint8_t rate2;
 int16_t climb1;
 int16_t climb2;
);

Struct name
{
 uint8_t size;
 uint8_t number;

QuEST.phaedsys.org page 34 of 55

 int16_t speed;
 int16_t direction;
 struct part parts;

};

Only one declaration per line.

4.7 Flow Control

4.7.1 Function calls in control clauses
Function calls should not be used in flow control statements. For example:-

If(printf(“hello world\n”))
{
 statements;
}

While(Get_result())
{
 statements;
}

This is partly because of side effects, partly for debugging and also
readability.

4.7.2 Null Statements

Null control statements shall be clearly written as shown below using
braces to hold the null line with a comment.

While(TRUE == Ri)
{
 ; /*NULL Loop */
}

4.8 Comments

Comments shall follow the style

/* single line comment */

QuEST.phaedsys.org page 35 of 55

/*
** multiple
** Line
** Comment
*/

The comment system // should not be used unless it is documented that
ALL tools in the system will accept this method. Many do not.

In which case the system

// single line comment

//
// multiple
// Line
// Comment
//

Shall be used.

It shall not be permitted to mix both types of comment markers in a
project. This excludes third party libraries. However where possible 3rd
party libraries should conform to the guide.

4.8.1 Nested comments

Comments shall not be nested.

4.8.2 Commenting out code

Code shall not be commented out. Dead code that is commented out is
dangerous as it is very easy to make it live again.

4.8.3 Comment density

This is extremely difficult to mandate. The phrase often seen in coding
standards is "Comments shall be meaningful" Which is pointless and no
help at all.

The current rule of thumb is 30% of the file by volume. However some code
written well using Consts and defines may need few comments.

Other code may need many comments. What is obvious to the
programmer may not be obvious to another programmer (or even the
original programmer 6 months later).

The requirements for comments can only be found through code review.
There is no magic formula or automatic answer. A metrics tool [see DAC]
can tell you if you have more or less than your arbitrary level eg 30% but

QuEST.phaedsys.org page 36 of 55

no tool can tell you if the comments make sense or if more (or less) are
needed.

 A manual code review is the only answer

QuEST.phaedsys.org page 37 of 55

5 Source Code Templates

There follows a set of file templates for several popular version control
systems. These can be used as they are or modified to suit your own
requirements. Their inclusion here implies no recommendation for or
against. They are just the ones I have come across.

Microsoft Source Safe. PVCS from Merant/Intersolve, source Intrgrity from
MKS and RCS from Component Software all use keywords in a similar
way.

Rational's Clear Case does not have key words. This is due to the way the
system works. Clear Case is designed to be used over distributed
databases and networks. This permits safe developments over several
separate sites (that do not even need to be on the same continent). I have
used this system with a development team running into three figures on 10
sites on three continents. It was an embedded Unix project.

I have used all of the VCS listed here are one time or another. Each has it's
own strong points and much will come down to how you get on with the
interface. I would urge you to look at the levels of support and the costs.
Also check for compatibility with the other tools you wish to use.

Source Integrity is available from www.MKS.com

Source Safe is available from Microsoft

PVCS is available from www.merant.com

ClearCase is available from www.rational.com

CS-RCS is available from :-http://www.componentsoftware.com/ and, at
the time of writing, is free for single users.

QuEST.phaedsys.org page 38 of 55

QuEST.phaedsys.org page 39 of 55

5.1 Source Safe Templates

/***
** $Workfile: $
** Name:
** Copyright :Phaedrus Systems 1999
** $Author: $
** $Revision: $
**
** Analysis reference:
**
** Compiler :
** Target :
**
** $Log: $
**
*/

/*** Include */
#define CO0001_M

#include < system.h>
#include < thirdpartysw.h>
#include " project.h"

/*** Defines */

#define name value
#define name value
#define name value

/*** Globals */

/** Prototypes */

static void function(void)

/** Main */

void main(void)
{

}

/***/
/*********** End of $Workfile: $******/
/**/

QuEST.phaedsys.org page 40 of 55

/**/
/*
** $Workfile: $
**
** Copyright: Ltd
** $Author: $
**
** $Revision: $
**
** Analysis reference:
** Compiler :
** Target :
**
** $Log: $
**
*/

#ifndef CO0001_H
#define CO0001_H

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE function_name()

#endif /*end guard */

/***** END of $Workfile: $ ************/

/*** */
/* Name:
**
** Purpose:
**
** Design reference:
**
** Input Parameters:
** Permitted range:
**
** Return Parameter:.
**
*/

QuEST.phaedsys.org page 41 of 55

QuEST.phaedsys.org page 42 of 55

5.2 MKS Source Integrity Templates

/***
** $RCSfile$
** Name:
** Copyright :Phaedrus Systems 1999
** $Author$
** $Revision$
** $ProjectName$
** Analysis reference:
**
** Compiler :
** Target :
**
** Log
**
*/

/*** Include */
#define CO0001_M

#include < system.h>
#include < thirdpartysw.h>
#include " project.h"

/*** Defines */

#define name value
#define name value
#define name value

/*** Globals */

/** Prototypes */

static void function(void)

/** Main */

void main(void)
{

}

/***/
/*********** End of $RCSfile$******/
/**/

QuEST.phaedsys.org page 43 of 55

/**/
/*
** $RCSfile$
** $ProjectName$
** Copyright: Ltd
** $Author$
**
** $Revision: $
**
** Analysis reference:
** Compiler :
** Target :
**
** Log
**
*/

#ifndef CO0001_H
#define CO0001_H

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE function_name()

#endif /*end guard */

/***** END of $RCSfile$ ************/

QuEST.phaedsys.org page 44 of 55

5.3 PVCS Templates

/***
** $Workfile: $
** Name:
** Copyright :Phaedrus Systems 1999
** $Author: $
** $Revision: $
**
** Analysis reference:
**
** Compiler :
** Target :
**
** $Log: $
**
*/

/*** Include */
#define CO0001_M

#include < system.h>
#include < thirdpartysw.h>
#include " project.h"

/*** Defines */

#define name value
#define name value
#define name value

/*** Globals */

/** Prototypes */

static void function(void)

/** Main */

void main(void)
{

}

/***/
/*********** End of $Workfile: $******/
/**/

QuEST.phaedsys.org page 45 of 55

/**/
/*
** $Workfile: $
**
** Copyright: Ltd
** $Author: $
**
** $Revision: $
**
** Analysis reference:
** Compiler :
** Target :
**
** $Log: $
**
*/

#ifndef CO0001_H
#define CO0001_H

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE function_name()

#endif /*end guard */

/***** END of $Workfile: $ ************/

/*** */
/* Name:
**
** Purpose:
**
** Design reference:
**
** Input Parameters:
** Permitted range:
**
** Return Parameter:.
**
*/

QuEST.phaedsys.org page 46 of 55

5.4 Clear CASE Templates

/***
** Workfile:
** Name:
** Copyright :
** Author:
** Revision:
**
** Analysis reference:
**
** Compiler :
** Target :
**
**
**
*/

/*** Include */
#define CO0001_M

#include <system.h>
#include <3rd party.h>
#include "project type defs"
#include "own module.h"

/*** Defines */

#define name value
#define name value
#define name value

/*** Globals */

/** Prototypes */

static void function(void)

/** Main */

void main(void)
{

}

/***/
/*********** End of Workfile: ******/
/**/

QuEST.phaedsys.org page 47 of 55

/**/
/*
** Workfile:
**
** Copyright: Ltd
** Author:
**
** Revision:
**
** Analysis reference:
** Compiler :
** Target :
**
** $Log: $
**
*/

#ifndef CO0001_H
#define CO0001_H

ifdef CO0001_M
 #define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE function_name()

#endif /*end guard */

/***** END of Workfile: ************/

/*** */
/* Name:
**
** Purpose:
**
** Design reference:
**
** Input Parameters:
** Permitted range:
**
** Return Parameter:.
**
*/

QuEST.phaedsys.org page 48 of 55

5.5 Component Software's RCS

//**
//
// $RCSfile:$
// Copyright
// $Author:$
// $Revision:$
// $Date:$
//
// Specification Document :
// Compiler:
// Target
//
// $Log:$
//
//
//*** Include
#define UNIQUE_FILE_ID_HERE

#include <system.h>
#include <3rd party.h>
#include "project type defs"
#include "own module.h"

//*** Defines

//*** Globals

//** Prototypes

// statics only!

//** Main

void main(void)
{
 //Null statement
}

//***
/ End of $RCSfile:$
//***

QuEST.phaedsys.org page 49 of 55

//**
//
// $RCSfile:$
// Copyright
// $Author:$
// $Revision:$
// $Date:$
//
// Specification Document :
// Compiler:
// Target
//
// $Log:$
//
//
#ifndef UNIQUE_FILE_ID_H
#define UNIQUE_FILE_ID_HERE_H

#ifdef UNIQUE_FILE_ID_M

#define _SCOPE_ /**/
#else
 #define _SCOPE_ extern
#endif

SCOPE function_name()

#endif // end guard

//***
// End of $RCSfile:$
//***

QuEST.phaedsys.org page 50 of 55

6 Appendix B Lint and Example Program

The following program, BADCODE.C, is one of the example programs
provided with our evaluation kits. This program has a lot of errors and is
intended to demonstrate the error detecting and correcting capabilities of
our tools.

Following are listings of the example program, output from the C51
compiler, and output from PC-Lint. The C51 Compiler detects and reports
12 errors and warnings while PC-Lint detects and reports 26 errors and
warnings.

As you can see, the quantity and quality of the error messages reported by
PC-Lint is greater than that reported by the C compiler.

/*---
BADCODE.C

Copyright 1995 KEIL Software, Inc.

This source file is full of errors. You can use uVision
to compile and
correct errors in this file.
---*/

#incldue <stdio.h>

void main (void, void)
{
unsigned i;
long fellow;

fellow = 0;

fer (i = 0; i < 1OOO; i++)
 {
 printf ("I is %u\n", i);

 fellow += i;
 printf ("Fellow = %ld\n, fellow);
 printf ("End of loop\n")
 }
}

QuEST.phaedsys.org page 51 of 55

C51 Output

When compiled with the C51 compiler, the BADCODE program generates
the following errors and warnings:

MS-DOS C51 COMPILER V5.02
Copyright (c) 1995 KEIL SOFTWARE, INC. All rights reserved.
*** ERROR 315 IN LINE 10 OF BADCODE.C: unknown #directive 'incldue'
*** ERROR 159 IN LINE 12 OF BADCODE.C: 'typelist': type follows void
*** WARNING 206 IN LINE 19 OF BADCODE.C: 'fer': missing function-
prototype
*** ERROR 267 IN LINE 19 OF BADCODE.C: 'fer': requires ANSI-style
prototype
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near ';'
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near 'OOO'
*** ERROR 202 IN LINE 19 OF BADCODE.C: 'OOO': undefined identifier
*** ERROR 141 IN LINE 19 OF BADCODE.C: syntax error near ')'
*** WARNING 206 IN LINE 21 OF BADCODE.C: 'printf': missing function-
prototype
*** ERROR 103 IN LINE 24 OF BADCODE.C: '<string>': unclosed string
*** ERROR 305 IN LINE 24 OF BADCODE.C: unterminated string/char const
*** ERROR 141 IN LINE 25 OF BADCODE.C: syntax error near 'printf'

C51 COMPILATION COMPLETE. 2 WARNING(S), 10 ERROR(S)

QuEST.phaedsys.org page 52 of 55

PC-Lint Output
When the same code is parsed by PC-Lint, the BADCODE program
generates the following errors and warnings:

--- Module: badcode.c
badcode.c 10 Error 16: Unrecognized name
badcode.c 10 Error 10: Expecting end of line
badcode.c 12 Error 66: Bad type
badcode.c 12 Error 66: Bad type
badcode.c 19 Info 718: fer undeclared, assumed to return int
badcode.c 19 Info 746: call to fer not made in the presence of a
prototype
badcode.c 19 Error 10: Expecting ','
badcode.c 19 Error 26: Expected an expression, found ';'
badcode.c 19 Warning 522: Expected void type, assignment, increment
or decrement
badcode.c 19 Error 10: Expecting ';'
badcode.c 19 Error 10: Expecting ';'
badcode.c 21 Info 718: printf undeclared, assumed to return int
badcode.c 21 Info 746: call to printf not made in the presence of a
prototype
badcode.c 23 Info 737: Loss of sign in promotion from long to
unsigned long
badcode.c 23 Info 713: Loss of precision (assignment) (unsigned
long to long)
badcode.c 24 Error 2: Unclosed Quote
badcode.c 25 Error 10: Expecting ','
badcode.c 26 Error 10: Expecting ','
badcode.c 26 Error 26: Expected an expression, found '}'
badcode.c 26 Warning 559: Size of argument no. 2 inconsistent with
format
badcode.c 26 Warning 516: printf has arg. type conflict (arg. no. 2
-- pointer vs. unsigned int) with line 21
badcode.c 27 Warning 550: fellow (line 15) not accessed

--- Global Wrap-up
Warning 526: printf (line 21, file badcode.c) not defined
Warning 628: no argument information provided for function printf
(line 21, file badcode.c)
Warning 526: fer (line 19, file badcode.c) not defined
Warning 628: no argument information provided for function fer (line
19, file badcode.c)

QuEST.phaedsys.org page 53 of 55

QuEST.phaedsys.org page 54 of 55

7 References

Beach & Hills Hitex C51 Primer 4th Ed, Hitex UK, 2002,
http://www.hitex.co.uk

COX B, Software ICs and Objective C, Interactive Programming
Environments, McGraw Hill, 1984

Hatton L, Safer C, Mcgraw-Hill(1994)

Hills C A, Embedded C: Traps and Pitfalls Chris Hills, Phaedrus Systems,
September 1999, http://www.phaedsys.org

Hills C A, Embedded Debuggers Chris Hills & Mike Beach, Hitex (UK) Ltd.
April 1999 http://www.hitex.co.uk & http://www.phaedsys.org

Hills CA & Beach M, Hitex, SCIL-Level A paper project managers, team
leaders and Engineers on the classification of embedded projects and
tools. Useful for getting accountants to spend money Download from
www.scil-level.org

[Johnson] S. C. Johnson, ‘Lint, a Program Checker,’ in Unix Programmer’s
Manual, Seventh Edition, Vol. 2B, M. D. McIlroy and B. W. Kernighan, eds.
AT&T Bell Laboratories: Murray Hill, NJ, 1979.

[Jones] A History of punched cards. Douglas W. Jones Associate Professor
of Computer Science at the University of Iowa.
http://www.cs.uiowa.edu/~jones/cards/index.html

Kernighan Brian W, The Practice of Programming. Addison Wesley 1999

Koenig A C Traps and Pitfalls, Addison Wesley, 1989

K&R The C programming Language 2nd Ed., Prentice-Hall, 1988

MISRA Guidelines For The Use of The C Language in Vehicle Based
Software. 1998 From www.misra.org.uk and www.hitex.co.uk

Ritchie D. M. The Development of the C Language Bell Labs/Lucent
Technologies Murray Hill, NJ 07974 USA 1993 available from his web site
http://cm.bell-labs.com/cm/cs/who/dmr/index.htm. This is well worth
reading.

http://www.hitex.co.uk/
http://www.phaedsys.org/
http://www.scil-level.org/
http://www.misra.org.uk/
http://www.hitex.co.uk/
http://cm.bell-labs.com/cm/cs/who/dmr/index.htm

QuEST.phaedsys.org page 55 of 55

Hitex (UK) Ltd.
Warwick Uni Science Park Chris@phaedsys.org
Coventry, CV4 7EZ http://quest.phaedsys.org/
http://www.hitex.co.uk/
chills@hitex.co.uk

mailto:quest@phaedsys.org
http://quest.phaedsys.org/
http://www.hitex.co.uk/
mailto:chills@hitex.co.uk

	Introduction
	The Tile Hill Style Guide- History
	Availability and templates
	Errors and omissions
	Additional contributors

	The Style Guide- Rational
	General notes
	Additional Changes from the first version

	Version control and other tools
	Lint & static analysis
	DA-C

	The Tile Hill Embedded C Style Guide
	Files
	File naming
	File names should be kept short
	Header file names
	Source files should be ASCII chars only

	File name extensions
	C/C++ File extensions
	Assembly files
	Miscellaneous files.

	Templates for files
	Source File Template
	File Information Block
	Other information
	Include
	Define
	Global
	Prototypes

	File EOF Marker

	Templates for functions
	Order of functions
	Main function

	Templates for Header files

	Braces and the One True Faith
	Constants, Defines and Types
	Long constants
	Hex constants
	Octal Constants
	Const
	Defines
	Types

	Structures and Unions
	Flow Control
	Function calls in control clauses
	Null Statements

	Comments
	Nested comments
	Commenting out code
	Comment density

	Source Code Templates
	Source Safe Templates
	MKS Source Integrity Templates
	PVCS Templates
	Clear CASE Templates
	Component Software's RCS

	Appendix B Lint and Example Program
	References

