
This document is originally distributed by AVRfreaks.net, and may be distributed, reproduced, and modified 
without restrictions. Updates and additional design notes can be found at: www.AVRfreaks.net

DESIGN NOTE
AUTHOR:
KEYWORDS: #024TIMER, COUNTER, INPUT CAPTURE, OUTPUT COMPARE

AVRFREAKS
Timer/Counter Basics

Introduction All AVR parts feature one or more general purpose Timer/Counters. All AVRs have at
least one 8-bit Counter. Some have more, and some have 16-bit Counters as well. All of
these can be used as a Timer with an internal clock base, or as a Counter with an exter-
nal pin connection which triggers the counting. Some devices allows the Timer to use an
external 32.768 Hz crystal as clock base.

This document is intended to enable the reader to set up and use the Timer/Counters of
the AT90S8515 device. It’s easy to expand the example to another AVR with a little help
from that device’s datasheet.

Overview The AT90S8515 is a very common all-round AVR. This part features one 8-bit
Timer/Counter (T/C) called Timer/Counter0, and one 16-bit T/C called Timer/Counter1,
each with separate prescalers. The 16-bit T/C furthermore features Compare and Cap-
ture Modes. 

The following might clarify some questions about the description so far:

• The prescaler permits the clock source for the Timer/Counter to be a fraction (1/1, 
1/8, 1/64, 1/256, or 1/1024) of the internal clock, enabling the timers to be set to a 
number of modes. When the prescaler is set, the T/C is in Timer mode.

• The external input pin can trig the Counter on rising or falling edge. When enabled, 
the T/C is in Counter mode.

The Timer/Counters are affected by the following registers:

• The Timer/Counter Interrupt Mask Register (TIMSK): In this register, the various 
interrupts of both Timers are enabled or disabled.

• The Timer/Counter Interrupt Flag Register (TIFR): This register holds the Interrupt 
Flags for the Timer/Counter1 interrupts. Each bit in the TIFR has a corresponding bit 
in TIMSK

• The Timer/Counter Control Register(s) (TCCR0 / TCCR1A/B): These registers 
contain the prescaler value, external pin edge detection, Output Compare and Input 
Capture modes (if available) as well as PWM (Pulse Width Modulation) modes. 
PWM is not within the scope of this document.

• The Output Compare Registers (OCR1A/B – Timer/Counter1 only) contain the data 
to be continuously compared with Timer/Counter1 when in Compare mode. A 
Compare Match will occur if Timer/Counter1 counts to the OCR value. This will 
invoke a compare interrupt if enabled.
1www.AVRfreaks.net Design Note #024 – Date: 05/02



• The Input Capture Register (ICR1 – Timer/Counter1 only): When the rising or falling 
edge (according to settings) of the signal at the Input Capture Pin – ICP – is 
detected, the current value of the Timer/Counter1 is transferred to this register. At 
the same time, the Input Capture Flag – ICF1 – is set (one). This will invoke a 
capture interrupt if enabled

Examples The following source code is an example, created to enable the reader to perform nor-
mal setup of the Timer/Counters, as well as basic operations. Both the 8-bit and the 16-
bit timers of the AT90S8515 are used, as well as the Timer0 Overflow Interrupt and the
Timer1 Compare A Interrupt with Timer Reset. The result is a (poor due to inadequate
oscillating frequency) clock which flashes the four inner LEDs of an STK500 every sec-
ond, toggles the two second-to-outer LEDs every half minute, and the outer LEDs every
minute. 

The frequency is based on the STK500's on-board driver Oscillator of 3.69 MHz to make
the example more available. This frequency is prescaled with a 256 ratio, software
scaled to a ratio of 100 and then converted to hex format, losing accuracy. The result is
rather good on the minute accuracy, but poor on seconds. To make an actual clock, a
watch crystal should be used.

The following approach has been used:
3690000 Hz / 256 = 14414,0625

14414,0625 * 60 = 864843,75 / 100 = 8648,4375 ~ 0x21C8 (minute)

14414,0625 / 100 = 144,140625 ~ 0x90 (second)

Please read the comments in the C code, as they are applicable to the assembly as
well.

C Code //Compiler: IAR EW A90 1.51b

//include definitions for our part

#include <io8515.h>

//include intrinsic commands

#include <ina90.h>

#define COUNT 100

#define COUNT_HALF 50

int minutecounter, secondcounter;

interrupt [TIMER1_COMPA_vect] void min(void)

{

  minutecounter--;

  if(minutecounter == 0){

    PORTB = PORTB ^ 0x81;//toggle outside LEDs

    minutecounter = COUNT;

  }

  else if(minutecounter == COUNT_HALF){

    PORTB = PORTB ^ 0x42;//toggle next LEDs

  }

}

www.AVRfreaks.net2 Design Note #024 – Date: 05/02



interrupt [TIMER0_OVF0_vect] void second(void)

{

  secondcounter--;

  if(secondcounter == 0){

    PORTB = ~PORTB ^ 0xc3;/*toggle inside LEDs

                     while keeping outside*/

    TCNT0 = 0x100-0x90;   //reload timer 0

    secondcounter = COUNT_HALF; //twice a sec

  }

}

void initialize(void)

{

  secondcounter = COUNT_HALF;

  minutecounter = COUNT;

  DDRB = 0xff;        //port B all outputs

  

  //set the timer0 prescaler to CK/256

  TCCR0 |= (1<<CS02);

  /*load the nearest-to-one-second value 

    into the timer0*/

  TCNT0 = 0x100-0x90; 

 

  /*clear timer/counter1 on compare matchA

    and set the prescaler to CK/256*/

  TCCR1B = (1<<CTC1)|(1<<CS12); 

  

  //Set the compare register to "one minute"

  OCR1A = 0x21c8;

  

  /*enable the compare match1 interrupt and

   the timer/counter0 overflow interrupt*/

  TIMSK |= (1<<OCIE1A)|(1<<TOIE0);

  

  _SEI();      //global interrupt enable

}

void main(void)

{

  initialize();

  while(1)

    ;                 //eternal loop

}

www.AVRfreaks.net 3Design Note #024 – Date: 05/02



Assembly Code ;Assembler: AVR Studio 3.53

;include bit definitions for the AT90S8515

.include "8515def.inc"

.def temp = r16        ;temporary data1

.def temp2 = r17       ;temporary data2

.def minutecounter = r18

.def secondcounter = r19

.equ COUNT = 100

.equ COUNT_HALF = 50

.org $0000

    rjmp  start       ;reset handler

.org OC1Aaddr         ;definitions in the 

    rjmp  minute ;8515 include file

.org OVF0addr

    rjmp  second

;Output Compare1A Interrupt (minute)

minute:

    dec   minutecounter

    cpi   minutecounter, 0

    breq  toggle_outside

    cpi   minutecounter, COUNT_HALF

    breq  toggle_next

    rjmp  minute_return

toggle_outside:

    ldi   temp, 0x81

    in    temp2, PORTB

    eor   temp2, temp

    out   PORTB, temp2

    ldi   minutecounter, COUNT

    rjmp  minute_return

toggle_next:

    ldi   temp, 0x42

    in    temp2, PORTB

    eor   temp2, temp

    out   PORTB, temp2

minute_return:    

    reti    

    

;Timer0 Overflow Interrupt (second)
www.AVRfreaks.net4 Design Note #024 – Date: 05/02



second:

    dec   secondcounter

    cpi   secondcounter, 0

    brne  return_second

    ldi   temp, 0xff

    in    temp2, PORTB

    eor   temp2, temp

    ldi   temp, 0xc3

    eor   temp2, temp

    out   PORTB, temp2

    ldi   secondcounter, COUNT_HALF

return_second:

    reti

initialize:

    ldi   secondcounter, COUNT_HALF

    ldi   minutecounter, COUNT

    ldi   temp, 0xff

    out   DDRB, temp

    ldi   temp, (1<<CS02)

    out   TCCR0, temp

    ldi   temp, 0x100

    subi  temp, 0x90

    out   TCNT0, temp

    ldi   temp, (1<<CTC1)|(1<<CS12)

    out   TCCR1B, temp

    ldi   temp, 0x21

    ldi   temp2, 0xc8

    out   OCR1AH, temp

    out   OCR1AL, temp2

    ldi   temp, (1<<OCIE1A)|(1<<TOIE0)

    out   TIMSK, temp

    sei

    ret

    

start:

    ldi temp,low(RAMEND)

    out SPL,temp

    ldi temp,high(RAMEND)

    out SPH,temp           ;init Stack Pointer

    rcall initialize

forever: rjmp  forever       ;eternal loop
www.AVRfreaks.net 5Design Note #024 – Date: 05/02


	Introduction
	Overview
	Examples
	C Code
	Assembly Code


