
By: David Kleidermacher, Vice President,
Engineering, Green Hills Software, Inc.

When an interrupt fires, the microprocessor executes
an interrupt service routine (ISR) that has been installed
to service the interrupt. The amount of time that elaps-
es between a device interrupt request and the first
instruction of the corresponding ISR is known as inter-
rupt latency. The interrupt handling code can optionally
execute an operating system API that will cause a
thread to be awakened. The amount of time that elaps-
es between the interrupt request and the first instruc-
tion of the thread awakened to handle it is known as
thread response time. ISRs are usually written at least
partially in assembly language and typically have limit-
ed resources. Code executing in a thread is written in a
high level language such as C, has full access to the
operating system API, and is easier to debug, analyze,
and profile. This article will address the ability to guar-
antee both a minimal interrupt latency and thread
response time.

In order to compute the system’s worst case response
time, it is necessary to examine all of the sources of
interrupt response delays to ascertain which source
causes the longest delay to the servicing of the highest
priority interrupt. Possibilities include:
• Longest hardware-induced latency
• Longest software-induced (e.g. by the kernel) 

interrupt disabling region
• Longest disabling region caused by the ISR of a lower

priority interrupt

The theoretical worst-case delay may depend on the
choice of CPU, choice of operating system, and how
device drivers and other software are written.

Minimum Interrupt Response Time: 
5 Simple Rules
Sound programming techniques coupled with proper
RTOS interrupt architecture can ensure the minimal
response time. The recipe:
1. Keep ISRs simple and short.
2. Do not disable interrupts.
3. Avoid instructions that increase latency.
4. Avoid improper use of operating system API 

calls in ISRs.
5. Properly prioritize interrupts relative to threads.

The following sections discuss these ingredients.

1. Short ISRs
Developers should keep ISRs short and simple, avoid-
ing loops and other constructs which can increase
latency and complexity. When an interrupt fires, the
microprocessor typically disables interrupts globally
before transferring control to the ISR; then either the
ISR must reenable interrupts (when safe to do so) or the

ISR return instruction will reenable interrupts automati-
cally. By keeping ISRs short and simple, developers will
avoid the common pitfall of leaving interrupts disabled
for too long, thereby increasing the latency of higher
priority interrupts. In addition, ISRs are notoriously diffi-
cult to debug and often must be analyzed by inspection
– practical only for simple implementations. Keeping
ISRs short will minimize interrupt response time, testing
and debugging time, and your frustration level.

2. Do Not Disable Interrupts
Operating system architecture is often the most signif-
icant factor for determining response times in an
embedded system. A major contributor to increased
interrupt latency is the number and length of regions in
which the kernel disables interrupts. By disabling inter-
rupts, the kernel may delay the handling of high priori-
ty interrupt requests that arrive in those windows in
which interrupts are disabled. Most operating systems
employ what we call a Simple architecture: whenever
the operating system wants to prevent preemption
within a critical section of its code, the operating sys-
tem simply disables interrupts for the duration of the
critical section. Most RTOSes employ this Simple archi-
tecture since it is easy to implement and the common-
ly used and understood mechanism (this is what we
learn in university operating systems class).

By disabling interrupts, the Simple RTOS is in effect
sacrificing the latency of the highest priority interrupt to
avoid problems caused by handling of lower priority
interrupts. A better solution, implemented in the
Advanced architecture, is to never disable interrupts in
kernel service calls. By never disabling interrupts, not
only does the Advanced RTOS guarantee the minimum
possible latency for the highest priority interrupt, but
also the absolute worst case latency can be trivially
proven (no need to examine all of those disabling
sequences in the kernel).

All other things equal, an RTOS that does not disable
interrupts in service calls will achieve better response
times than an RTOS that does disable interrupts. This is
common sense: if a high priority interrupt arrives while
executing within a Simple RTOS’s critical section, the
latency for the high priority interrupt will be increased
by the amount of time it takes to execute the remainder
of the critical section.

3. Avoid High-Latency Instructions
Certain CPU instructions, such as integer divide and
string manipulations, can take many cycles to execute;
interrupts are inhibited until execution is complete.
Although it is not always practical to avoid these
instructions in application code, the RTOS kernel itself
should avoid them. An RTOS that avoids these instruc-
tions will, all other things equal, achieve better interrupt
latency than an RTOS that ignores this restriction.

www.atmel.com page 21

Minimizing Interrupt Response TimeDesigner’s
Corner
Designer’s
Corner

THERE ARE MANY ASPECTS OF 

OPERATING SYSTEMS, SUCH AS 

CONTEXT-SWITCH TIME, SERVICE 

CALL PERFORMANCE, SCHEDULING 

ALGORITHMS, BUSINESS MODEL, TOOLS

AND MIDDLEWARE INTEGRATIONS, THAT

EMBEDDED SYSTEMS DEVELOPERS

SHOULD BE CONCERNED ABOUT; 

HOWEVER, THE MOST IMPORTANT 

CHARACTERISTIC – WHAT MAKES AN

OPERATING SYSTEM A REAL-TIME 

OPERATING SYSTEM – IS ITS ABILITY 

TO SERVICE INTERRUPTS QUICKLY.

A FAILURE TO MEET A RESPONSE TIME 

REQUIREMENT IN A REAL-TIME SYSTEM

CAN BE CATASTROPHIC. IN ADDITION,

OPERATING SYSTEM VENDORS USUALLY

PUBLISH BEST CASE, AVERAGE CASE,

OR WORST CASE RESPONSE TIMES IN 

A PARTICULAR TEST ENVIRONMENT.

BUT THIS IS MERELY MARKETING HYPE;

WHAT REALLY COUNTS IS THE TRUE,

GUARANTEED WORST-CASE TIME.

THIS ARTICLE WILL DESCRIBE HOW 

A MINIMAL YET GUARANTEED WORST-

CASE INTERRUPT RESPONSE TIME 

CAN BE ACHIEVED IN ANY TYPE OF 

ELECTRONIC PRODUCT, FROM SIMPLE

CONTROL APPLICATIONS TO THE 

MOST COMPLEX, MULTI-PROCESS,

I/O-INTENSIVE SYSTEMS. WE FOCUS 

ON MINIMIZING RESPONSE TIME FOR 

THE HIGHEST PRIORITY INTERRUPT

(SINCE LOWER PRIORITY INTERRUPTS

MAY BE DELAYED BY IT).



perform higher level interrupt handling services, such
as releasing a semaphore or placing a message into a
queue. The callback is executed by the kernel once it
has returned to a consistent state. If the developer must
write code in the ISR to spawn the callback and then
write more code in the callback to do the service call,
this makes programming more difficult.

The good news, however, is that the Advanced RTOS
can hide the details of the two-level handling by pro-
viding the required set of service calls (e.g. releasing a
semaphore) to ISRs. The service call knows that it is
being called from an ISR and will place the callback on
behalf of the programmer. Thus, the code is identical to
that used with a Simple RTOS: the ISR calls an API to
release a semaphore or post a message. From the
developer’s perspective, there is no additional setup or
complexity.

There are some important advantages to the Advanced
architecture’s optional two-level handler. Service calls
can take a significant amount of time (especially in the
case of the Simple RTOS that provides unbounded time
service calls). By pushing this work into the callback
(where interrupts are enabled), the Advanced RTOS
reduces the temporal footprint of the ISR which in turn
reduces the latency for higher priority interrupts. Again,
this is just common sense: in the Simple RTOS, the
entire execution of the service call is within the ISR itself;
in the Advanced RTOS, the ISR is much shorter because
it does not contain that service call footprint. Note that
the overhead of separating service call processing into a
callback is negligible: a callback entails merely placing
an item containing a function address on a list for the
scheduler to call; no extra stack creation or any other
heavyweight processing is required. Figure 1 depicts the

performance difference in interrupt latency between
the Simple and Advanced architectures in the midst of
a high priority interrupt preempting a lower priority
interrupt.

In addition to reducing ISR footprint, callbacks enable
the bulk of complex ISR processing time to be allocat-
ed to specific threads (for example, time spent handling
Ethernet interrupts can be attributed to the network
TCP/IP thread using the Ethernet device). These per-
thread callbacks provide finer grained control over time
spent in the system and reduce priority inversion (when
a low priority interrupt can delay a higher priority thread
handling a higher priority interrupt source). This level
of control of processing time may not be important in
simple embedded systems, but as systems grow in
complexity with many tasks and interrupt sources, this
Advanced approach can mean the difference between
meeting time budgets and going over them.

Because ISRs in the Advanced RTOS reenable inter-
rupts earlier and reduce overall interrupt latency in the
system, the Advanced RTOS is typically capable of han-
dling systems with higher frequency interrupts (e.g.
from multiple interrupt sources). The Simple RTOS may
not be able to keep up, dropping important data and
missing deadlines in the face of high interrupt loads.

Many safety critical standards (such as DO-178B for
flight safety) require an RTOS vendor to publish worst
case execution times for all service calls. Thus, devel-
opers who use an RTOS that both employs the
Advanced architecture and has been certified to strin-
gent safety standards can have maximum confidence
in the response time and robustness of their systems.

www.atmel.com page 22

4. Avoid Improper API Use in ISRs
ISRs commonly do not require any kernel API access at
all. The ISR may record some information, check status,
or perform some other basic operation before acknowl-
edging the interrupt and returning. In some cases, a
more complex ISR is required in order to wake up a
thread for higher level processing. This wake up may be
accomplished by releasing a semaphore or writing to a
message queue. However, many RTOS vendors permit
the use of a plethora of service calls from ISRs.
Although this may seem convenient, it can be deadly
when misused. The RTOS vendor should carefully con-
trol and limit ISRs to a small set of service calls that are
absolutely necessary and absolutely deterministic.

Non-deterministic API calls
As an example of the peril regarding API usage in ISRs,
consider how an RTOS handles the queue of threads
waiting for a resource (e.g. a semaphore or message).
Many Simple RTOSes use an ordinary linked list to hold
the queue of threads waiting on a resource. When the
resource becomes available, the first thread, regardless
of its importance relative to other waiting threads on the
list, is provided the resource and allowed to run (in con-
trast, the Advanced RTOS provides a mechanism to
automatically prioritize waiting threads).

Some of the Simple RTOSes have bolted on a new serv-
ice call that pulls the highest priority thread out of the
linked list and jams it onto the front of the list. This
allows the highest priority thread to be awakened when
the resource becomes available. One obvious problem
with this approach is its poor usability: the developer
must remember to insert these prioritization calls and
determine where in the code flow they belong.

You may have guessed the other problem. The prioriti-
zation request call is not deterministic. The RTOS must
search linearly through the unordered list to find the
highest priority blocked thread. Unbounded time service
calls are anathema in RTOS design since they can
cause prohibitively long interrupt latency and make it
difficult if not impossible for system designers to apply
standard real-time scheduling techniques such as Rate
Monotonic Analysis (RMA). Furthermore, use of the
nondeterministic API may not cause failures in the lab
or in simplistic applications. However, complex applica-
tions or applications that behave differently in the field
may encounter a missed deadline that results in a sys-
tem failure. In innocently following the vendor’s guid-
ance that permits, within an ISR, the use of an API to
prioritize the wait list, the developer has unwittingly
increased interrupt latency by an unpredictable,
unbounded amount of time.

ISR Service Calls in the Advanced Architecture
Some claim that a drawback of the Advanced interrupt
architecture is that service calls cannot be executed
directly from an ISR (doing so could cause corruption
since the kernel does not disable interrupts in critical
sections). When a complex ISR is required, the
Advanced architecture provides the option of using a
second-level handler, sometimes termed a callback, to

Figure 1: Typical sequence for Simple architecture results in a longer interrupt latency (time to reach HSR-1)
than the Advanced architecture sequence.



If you’re looking for ways to get better designs to market faster (and who isn’t these 
days), start designing with Atmel’s AVR® family of MCUs.

No other 8-bit micro can give you its exceptional combination of performance, flexibility and power management. 

AVR is the most efficient and powerful 8-bit MCU on the planet. It has an enhanced RISC core running single-cycle
instructions and a well-defined I/O structure that limits the need for external components. So it’s not only easier to 
use, it delivers blazing execution of up to 20 MIPS. 

And when you consider AVR’s outstanding Flash and EEPROM capability, plus its huge range of packaging, 
peripherals, memory sizes, power management modes and development tools, there’s almost no limit to what you 
can design. From complex battery operated applications to industrial controls, and a whole lot more in between. 

That’s why AVR has become the most popular microcontroller of its kind, with over a billion installed around t
he world. 

So if you’re looking for ways to get more out of your designs, make sure you use the microcontroller that 
delivers more. 
Check it out today at www.atmel.com/ad/avr and register to win a free development kit. It just could be the start 

of a very fruitful relationship.

www.atmel.com page 23

5. Pardon the Interruption: 
Prioritizing Interrupts Below Threads 
When a thread is awakened for higher level processing
of the most important real-time interrupt, this thread
becomes the most important thread in the system. The
thread must complete its processing within a fixed
period of time.

In the Simple RTOS, the thread runs with all interrupts
enabled. Any low priority interrupt in the system can
fire, delaying the most important thread and causing
deadlines to be missed. In fact, since interrupts may
nest, multiple interrupts, and all of their associated ISR
processing, could delay this high priority processing by
an unpredictable, unbounded amount of time.

The Advanced RTOS allows interrupts to be prioritized
relative to threads and provides services built-in to the
scheduler to automatically enforce this prioritization.
Thus, when a high priority thread is awakened during
interrupt processing, the kernel will automatically
inhibit lower priority interrupts prior to switching to the
high priority thread. When the high priority thread
completes its work and is de-scheduled, the kernel
automatically reenables lower priority interrupts. This
architecture guarantees the minimum thread response
time for the highest priority real-time events. Figure 2
depicts the performance difference in thread response
time between the Simple and Advanced architectures
in the midst of a low priority interrupt preempting a
high priority thread.

Figure 2: Typical sequence for Simple architecture results in a longer interrupt latency (time to reach HSR-1)
than the Advanced architecture sequence.

Conclusion 
Complex embedded systems, with multiple concurrent
tasks and interrupt sources, pose a challenge for RTOS
interrupt handling architecture. Legacy RTOSes,
designed with a Simple architecture sufficient for yes-

terday’s basic embedded systems, fall short of this
challenge. Embedded systems developers will achieve
the best possible interrupt response time by following a
few simple rules and employing an RTOS with an
Advanced interrupt architecture.

Find out more about Atmel’s AVR solutions today at www.atmel.com/ad/avr

Everywhere You AreSM

© Atmel Corporation 2005. All rights reserved. AVR, Atmel, logo and combinations thereof, are registered trademarks, and Everywhere You Are is a trademark
of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Performance Up to 20 MIPS
Power consumption 100nA (power down)
Memory size 1 to 256 Kbytes Flash
Packaging 8 to 100 pins
Peripherals UART, SPI, 2-wire interface, timers, PWM, 10-bit AD, CAN, LCD
Migration path All devices code compatible for seamless upgrade

With Atmel’s AVR microcontrollers,
your designs will always give you
more than you expected.


