
Debugging Interrupts

I Debugging systems with many interrupts can be difficult.

I The primary need is for visibility into what is happening.

I By using a primitive 3-bit DAC and some debug code we can
determine how often interrupts occur and how long it takes for them
to run.

I By commenting out some code you can also tell if a interrupt is
hung in an endless loop.

Debugging Interrupts

I The DAC circuit is shown below. This example is for use on the
ATMega128 board supplied by OSU.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

Port G bit 1 Port G bit 3Port G bit0

R1
20K

R2
20K

R3
10K

R5
10K

R4
20K

R6
20K

output to oscope

Use ground pin on

 Port G connector

C1
0.01uF

 C1 is not critical or absolutely necessary.

It is included to keep the output signal clean.

Port G connector

gnd

bit 0
bit 1
bit 2

Figure 1: R2R Network DAC

I The output voltage of this DAC is:

Vout = Vref ∗ bit value
2number of bits

Debugging Interrupts

I Since we have 3 bits and our reference voltage is 5 volts, the output
voltages we can obtain with different bit values is:

Vout = 5 ∗ bit value
8

Bit value Output Voltage

000 0V
001 0.625V
010 1.25
011 1.875
100 2.5
101 3.125
110 3.75
11l 4.375

Debugging Interrupts

I In our code, we associate a bit value and thus a voltage for each
interrupt.

I When we are executing in main() the output voltage is zero.

//3-bit DAC binary values

#define TCNT0_ISR 0x01

#define TCNT1_ISR 0x02

#define TCNT3_ISR 0x03

#define ADC_ISR 0x04

#define TWI_ISR 0x05

#define USART0_ISR 0x06

#define NOT_IN_ISR 0xF8 //reset lower three bits to zero

}

Debugging Interrupts

I We get distinct voltages for each interrupt.

Bit value Output Voltage Running Code

000 0V main()
001 0.625V TCNT0 ISR
010 1.25 TCNT1 ISR
011 1.875 TCNT3 ISR
100 2.5 ADC ISR
101 3.125 TWI ISR
110 3.75 USART0 ISR
11l 4.375 unused

Debugging Interrupts

I We use one variable to determine if the interrupt debug code is used.

// define to show interrupts via 3-bit DAC

#define SHOW_INTERRUPTS

I The beginning and end of each ISR is bracketed with debug
statements.

#ifdef SHOW_INTERRUPTS

PORTG |= (USART0_ISR); //set interrupt value to this ISR

#endif

//ISR code goes here

#ifdef SHOW_INTERRUPTS

PORTG &= NOT_IN_ISR; //set interrupt value back to zero

#endif

Debugging Interrupts

I For example, the ADC ISR looks like this.

ISR(ADC_vect){

#ifdef SHOW_INTERRUPTS

PORTG |= (USART0_ISR); //set interrupt value to this ISR

#endif

OCR2=ADCH; // update pwm dimmer

adc_flag=ADC_DONE; //set done flag

#ifdef SHOW_INTERRUPTS

PORTG &= NOT_IN_ISR; //set interrupt value back to zero

#endif

}// ADC_vect_ISR

Debugging Interrupts
I Five different interrupts, their periods and duration seen here.

Plenty of time for main() and other interrupts to run. This is a
good picture.

Figure 2: Big Picture of All Interrups in a System

Debugging Interrupts

I You can determine relative or absolute ISR run times if you zoom in.

Figure 3: Relative Timing of Interrupts Shown

Debugging Interrupts
I ISR for TCNT0 (0.625V) ran 34.6uS, USART0 ISR (3.77V) ran 2uS.

Figure 4: Interrupt Timing

