
Debugging With a Serial Port

I Debugging using a serial port is an simple and reliable technique.

I It focuses on behavior observability.
I Its a much lower overhead way to implement a ”printf()” into your

code.
I The printf() code is nearly one quarter the size of our final project!

I The presence of the ”instrument” ideally would not pertubate the
time behavior of your code, otherwise your code will not behave as
expected.

I Don’t create a Heisenbug !

Debugging With a Serial Port

I We will use the ATMega128’s UART1.

I The UART will be covered in detail later, but for now you can just
insert a little code and things will work fine.

I The output of the UART will be directed to a USB to Serial module.

I The debug messages are displayed via a serial terminal on your
laptop.

Debugging With a Serial Port

I We will add some initalization code for the UART that runs outside
of any critical timing areas.

I Where we wish, we write a single byte to the UART data register.
This will be displayed on the laptop.

I The key to keeping the timing pertubation small is that it only takes
the time to write one byte, 125nS, to an on-chip register.

I Done correctly, the change to timing is very small.

I If you need more information than a single byte can carrry, this can
be done, but where you implement the multiple writes must be
chosen carefully.

Debugging With a Serial Port

I The connection between your AVR board, the module, and laptop is
simple.

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

DTR
RXD
TXD
+5V

GND
3V3

UART/USB Module

ATMega 128 Board

To any +5V socket
To any GND socket

To J6, pin 1 or Port D, pin 3

To laptop USB port

Figure 1: UART1 to USB Module Connections

Debugging With a Serial Port

I The code you need is simple. Using lab1 code a test case, let’s look
at the code in parts.

#include <avr/io.h>

#include <util/delay.h>

#include "uart_functions.h"

#define DEBUG 1

I We have to include the uart functions header file so we can use
functions in there.

I We set the preprocessor variable DEBUG to conditionally ”turn on”
our debug code. I chosse ’1’ to indicate that debug code is enabled.

Debugging With a Serial Port
int8_t debounce_switch () { snip !.........

int main() {

uart1_init ();

DDRB = 0xFF; //set port B to all outputs

while (1){ //do forever

if(debounce_switch ())

{

PORTB ++; // increment PORTB LEDs

#if DEBUG == 1

if(PORTB % 2){ uart1_putc(’o’);} //check odd

else {uart1_putc(’e’);} //check even

#endif

} //if debounce_switch ()

_delay_ms (2); //keep in loop to debounce 24ms

} // while

} //main

I Outside the while(1) loop, UART1 is initalized by uart1 init();

I The #if statement checks the value of DEBUG variable to
conditionally compile the if,else and link the uart1 putc()

statements which enables writing to the UART.

Debugging With a Serial Port

I If DEBUG was equal to ’0’, the if,else is still compiled but is not
linked in the executable.

I Although leaving in debug code is less aesthetically pleasing, it is
strongly advised that you leave it in place as written.

I If I had a dollar for everytime I’ve had to go back and put back
debug code that I’d deleted, I’d be rich!”

I Write your debug code carefully and cleanly. It probably will be used
again.

Debugging With a Serial Port

I Your Makefile will also need to be aware of the uart code. You need
to add the uart object code to your makefile object file list. If the
DEBUG statement is set to ’1’, the linker will include the debug
code, else not.

I For example, if the lab1 code.c was renamed to debug w uart.c,
you would need to change the object file list as follows:

OBJS = debug_w_uart.o uart_functions.o

Debugging With a Serial Port

I You can send multiple characters by using the uart puts()

function. This function takes a string or pointer as an argument.

uart1_puts("o\n\r");

I Remember though, that you will take longer to execute the debug
code.

I At 9600 baud, the first character takes about 125nS. Two characters
take about 1mS to send. Three characters would take about 2.2mS
to send.

I In 2.2mS, a 16MHz AVR can execute roughly 32,000 instructions!

Debugging With a Serial Port

I On the laptop, we need a terminal program to communicate with
the UART/USB module.

I Most any terminal program will do but I’ll use ”gtkterm”.

I Gtkterm is downloaded and installed with:

sudo apt -get install gtkterm

I Since Gtkterm ”talks” with a hardware port, you will need to invoke
it with sudo.

sudo gtkterm

