
always Block

I Assign statements are good for for simple logic expressions.

I For complex behavior, we need a more powerful means of expression.

I Sequential paradigms (if, else, case, while) can describe
more complex behavior.

I Within the procedural block, always we can write statements that
are evaluated sequentially.

I This has nothing to do with the order in which the logic operates.

I Always blocks run continuously. Actions inside them take zero time
to execute.



always Block

I Always statement structure (old-school Verilog 2001)

always @(sensitivity list) <begin> <procedural statements> <end>

I Example:

module ao2_gate(

input a, b, c, d,

output logic y);

logic tmp1, tmp2;

always @(a,b,c,d) begin

tmp1 = a & b;

tmp2 = c & d;

y = tmp1 | tmp2;

end

endmodule



always Block

I Whenever a variable in the sensitivity list changes, the always block
wakes up and executes its enclosed statements.

I If variables are omitted from the sensitivity list, the block will not
wake up when you want it to.

I <begin>,<end> will be needed if multiple statements exist.

I Variables on the LHS inside the always block must be of type logic
or reg.

I Synthesis ignores the sensitivity list.

always @(a,b,c,d) begin

tmp1 = a & b;

tmp2 = c & d;

y = tmp1 | tmp2;

end



always Block

I reg or logic variables retain the last assigned value

reg tmp1, tmp2;

always @(a,b,c,d,e,f)

begin

y = a & b;

y = c & d;

y = e & f;

end

I y retains the value (e & f) when always block concludes.



always Block

Two types of procedural assignment statements are used within always

I Blocking:
I The blocking assignment operator is the equals sign ”=”
I So named because blocking assignments must evaluate RHS and

complete the assignment without interruption from any other
statement.

I The blocking assignment also blocks other following assignments until
the current one is done.

I Blocking statements execute in the order they are specified.



always Block

Two types of procedural assignment statements

I Nonblocking
I The nonblocking assignment operator is the less-than-or-equals-to

operator ”<=”
I The nonblocking assignment evaluates the RHS at the beginning of a

time step and schedules the LHS update for the end of the time step.
I Between the evaluation of the RHS and update of LHS, other

statements may execute.
I The nonblocking statement does not block any other statements from

being evaluated.

I Nonblocking execution has two parts:
I 1. Evaluate RHS at beginning of time step
I 2. Update LHS at end of time step



always Block
Blocking and non-blocking assignments
Blocking Assignments Used

module fbosc1(

output reg y1, y2;

input clk, rst);

//always blocks can execute in any order

//"A" procedural block

always @ (posedge clk, posedge rst)

if (rst) y1 = 0; //reset

else y1 = y2;

//"B" procedural block

always @ (posedge clk, posedge rst)

if (rst) y2 = 1; //preset

else y2 = y1;

endmodule



always Block
Blocking and non-blocking assignments
Nonblocking Assignments Used

module fbosc2(

output reg y1, y2;

input clk, rst);

//always blocks can execute in any order

//"A" procedural block

always @ (posedge clk, posedge rst)

if (rst) y1 <= 0; //reset

else y1 <= y2;

//"B" procedural block

always @ (posedge clk, posedge rst)

if (rst) y2 <= 1; //preset

else y2 <= y1;

endmodule



Coding Guidelines
Thanks to Cliff Cummings, Sunburst Design

I When modeling sequential logic, use nonblocking assignments.

I When modeling latches, use nonblocking assignments.

I When modeling combo logic with an always block, use blocking
assignments.

I When modeling both sequential and combo logic within the same
always block, use nonblocking assignments.

I Do not mix blocking and nonblocking assignments in the same
always block.

I Do not make assignments to the same variable from more than one
always block.

For more information, see:
Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!

Available at: http://www.sunburst-design.com

http://www.sunburst-design.com

