always blocks

- Modules provide coarse-grain partitioning.
- Now we need a technique for both fine-grain partitioning and to create the digital logic in those parts.
- This is done primarily with *always* blocks.
 - *always_comb* creates strictly combinatorial logic
 - *always_ff* creates flip flops only
- In rare cases, we may want to describe latches.
 - *always_latch* creates latches only
always blocks

- Within an always_comb block we can create
 - AND/OR arrays of simple logic
 - Arithmetic operations
 - Comparison logic
 - State machine next state steering logic

```verilog
always_comb begin
  unique case (done_sm_ps)
  NOT_DONE : begin
    done = 1'b0; // not done indication
    if ((cycle_cnt == 5'd31) &
        (mult_sm_ps == SHIFT))
      done_sm_ns = DONE;
    else
      done_sm_ns = NOT_DONE;
  end
  DONE : begin
    done = 1'b1; // indicate done
    done_sm_ns = NOT_DONE; // go back
  end
  endcase
end
```
always blocks

- Within an `always_ff` block we create
 - Just Flip-flops

```verilog
current always_ff @(posedge clk, posedge reset)
    if (reset) done_sm_ps <= NOT_DONE; // at reset
    else done_sm_ps <= done_sm_ns; // else, goto next state
```

- FF’s with the combinatorial logic that drives their D-inputs

```verilog
current always_ff @(posedge clk, posedge reset)
    if (reset) cycle_cnt <= '0;
    else if (mult_sm_ps == SHIFT)
        cycle_cnt <= cycle_cnt + 1; // count up on shift
```

Any non-blocking assignment to a signal within an `always_ff` block creates a flip-flop whose Q output is connected to the name of the signal.
always blocks

- Note that:
 - `always_comb` used the blocking ”=” assignment
 - *Use blocking assignments in always blocks that are written to generate combinational logic.*
 - `always_ff` used the non-blocking ”<=” assignment
 - *Use nonblocking assignments in always blocks that are written to generate sequential logic.*

- Ignoring these guidelines may infer correct logic gates, but pre-synthesis simulation might not match the behavior of the synthesized circuit.

1"Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!, Clifford E. Cummings, Sunburst Design, Inc., SNUG-2000, San Jose, CA"
always blocks

Let’s do some syntax cleanup...

- The ’ (apostrophe) is called the *cast operator*
- It's used in several ways:
 - As in "C" it can be used to force a size or type

    ```
    y = 10’(x-2); // cast the value x-2 to be 10 bits in size
    y = int ’(2.0*3.0); // cast the value 6.0 to be the integer 6
    y = signed ’(x); // cast x to be a signed variable
    ```
 - It is also often used to denote a *fill* value. In other words it lets you set all the bits of a vector to a value without specifying radix or size.

    ```
    data = ’1; // set all the bits of data to V_dd}
    if (rst) y1 <= ’0; // set all bits of y1 to V_ss (ground)
    ```