for Statement

» Provides an indexed looping expression

» Must be used inside always or initial statement

» The for loop is structured just as in C.

» For loops must be used carefully when constructing combo logic.
» Non-synthesizible loops are easy to create.

» For loops are seldom used in synthesizible code.



for Statement

» The priority encoder looks at input bus a and outputs the encoding
of the highest bit that is set on bus y.

» Input value 0x00 is illegal. The valid bit detects this case.

» Could the valid bit be used for a timing (hardware) indication that
the output is ready?

module priority_encoder (
input [7:0] a,
output reg valid, //indicates output valid
output reg [2:0] y);

integer i;
always_comb begin
valid = 0; //default output
y = 3°Dbx; //default output
for (i=0; i<8; i++) begin
if (alil) begin
valid = 1; y = i;

end //if
end //for
end //always_comb

endmodule



for Stateme

nt

Output from synthesis for priority_encoder.sv

= b

A

Lg MY
:

I
|
{
1DDj
[
—]
]




for Statement

» Here's a neat bit of code using a for loop. What's it do?

module whatisit(

input [15:0] a, //data in a
input [16:0] b, //data in b
output reg [31:0] =z //data output
);
integer i;
always_comb begin

z=0;

for(i=0;i<=15;i++) begin
if (a[il) begin
z =z + (b<<i);
end
end
end
endmodule



for Statement

Synthesis output from whatisit.sv
1700 gates, 6.5nS worst case delay b[1] to z[31]

i

| = e




for Statement

» Note that in both cases, the sequential behavorial description using
for DOES NOT produce a sequential implementation.

» The operation of the gates is produced via concurrent evaluation.



