- Provides an indexed looping expression
- Must be used inside always or initial statement
- The for loop is structured just as in C.
- ► For loops must be used carefully when constructing combo logic.
- ▶ Non-synthesizible loops are easy to create.
- ► For loops are seldom used in synthesizible code.

- ► The priority encoder looks at input bus a and outputs the encoding of the highest bit that is set on bus y.
- ▶ Input value 0x00 is illegal. The valid bit detects this case.
- Could the valid bit be used for a timing (hardware) indication that the output is ready?

```
module priority_encoder (
 input
              [7:0]
 output reg valid, //indicates output valid
 output reg [2:0] v);
 integer i;
 always_comb begin
   valid = 0; //default output
   y = 3'bx; //default output
   for (i=0; i<8; i++) begin
     if (a[i]) begin
       valid = 1; v = i;
     end //if
   end //for
     //always_comb
 end
endmodul e
```

Output from synthesis for priority_encoder.sv

▶ Here's a neat bit of code using a for loop. What's it do?

```
module whatisit(
  input [15:0] a, //data in a
  input [15:0] b, //data in b
  output reg [31:0] z //data output
  );
  integer i;
  always_comb begin
   z=0:
   for(i=0;i<=15;i++) begin
     if (a[i]) begin
       z = z + (b << i);
     end
   end
 end
endmodul e
```

Synthesis output from whatisit.sv 1700 gates, 6.5 nS worst case delay b[1] to z[31]

- ▶ Note that in both cases, the sequential behavorial description using for DOES NOT produce a sequential implementation.
- ▶ The operation of the gates is produced via concurrent evaluation.