Mealy State Machines

- Mealy state machine outputs are formed by present state and input

- The structure and operation is identical to a Moore machine except for how the output is formed

- The machine may also have Moore-type outputs
Mealy State Machines

- Mealy outputs are best to stay away from unless a special situation requires it.
- Timing can be tricky to track as flip-flop Q outputs may go through two stages of combo logic prior to the next D-input.
- At synthesis time, special care must be taken to constrain this special signal.

Timing path is $t_{cyc} + 2 \times (t_{pd}) + t_{su}$
Mealy State Machines

- Mealy state machine diagrams best show output formation outside the state diagram
- Simply write the mealy equation below the state diagram and clearly indicate that it is a mealy output

```
mealy output:
if (!ps == DONE) && (go == 1)
  my_mealy = 1
```
Mealy State Machines

- Mealy state machine coding
 - Mealy outputs may be formed inside most any state machine
 - The Mealy output is formed in the case/if expression
 - The output is asserted under a state qualified by an if

```verilog
module mealy_noglitch ( output rd, ds, 
                        output reg my_mealy, 
                        input go, ws, clk, reset_n);

enum reg [3:0] { .......

always_ff @(posedge clk, .......
always_comb begin
  no_glitch_ns = XX;
  my_mealy = 1'b0; //default output
  case (no_glitch_ps)
    IDLE : if (go) no_glitch_ns = READ;
    else             no_glitch_ns = IDLE;
    READ : no_glitch_ns = DLY;
    DLY : if (!ws) no_glitch_ns = DONE;
    else             no_glitch_ns = READ;
    DONE : begin no_glitch_ns = IDLE;
      if (go) my_mealy = 1'b1;
    end
  endcase
end
end
```
module mealy_noglitch (output rd, ds, output reg my_mealy, input go, ws, clk, reset_n);

enum reg [3:0] {
 IDLE = 4'b00_00,
 READ = 4'b01_01,
 DLY = 4'b01_10,
 DONE = 4'b10_11,
 XX = 'x} no_glitch_ns, no_glitch_ps;

always_ff @(posedge clk, negedge reset_n)
 if (!reset_n) no_glitch_ps <= IDLE;
 else no_glitch_ps <= no_glitch_ns;

always_comb begin
 no_glitch_ns = XX;
 my_mealy = 1'b0; //default output
 case (no_glitch_ps)
 IDLE : if (go) no_glitch_ns = READ;
 else no_glitch_ns = IDLE;
 READ : no_glitch_ns = DLY;
 DLY : if (!ws) no_glitch_ns = DONE;
 else no_glitch_ns = READ;
 DONE : begin no_glitch_ns = IDLE;
 if (go) my_mealy = 1'b1;
 end
 endcase
end
assign {ds,rd} = no_glitch_ps[3:2];
endmodule
Mealy State Machines

▶ Synthesis results