
Asynchronous versus Synchronous Resets

I Reset is needed for:
I forcing the ASIC into a sane state for simulation
I initializing hardware, as circuits have no way to self-initialize

I Reset is usually applied at the beginning of time for simulation

I Reset is usually applied at power-up for real hardware

I Reset may be applied during operation by watchdog circuits



Synchronous Resets

I Reset is sampled only on the clock edge

I Reset applied as any other input to the state machine



Synchronous Resets

I Sync reset advantages
I The flip-flop is less complex, thus smaller in area
I Circuit is completely synchronous
I Synchronous resets provide filtering for the reset line

I Sync reset disadvantages
I Combinatorial logic grows and may cancel out the benefit
I Reset buffer tree may have to be pipelined to keep all resets occurring

within the same clock cycle
I May need to pulse stretch reset so its is wide enough to be seen at a

clock rising edge
I Requires a clock to be present if reset is to occur
I If internal tri-state buffers are present, separate asynchronous reset

may still be required
I Reset signal may take the fastest path to flip-flops



Asynchronous Resets
I Asynchronous reset advantages

I Reset has priority over any other signal
I Reset occurs with or without clock present
I Data paths are always clear of reset signals
I No coercion of synthesis tool needed for correct synthesis

I Asynchronous reset disadvantages
I Reset deassertion to all flip-flops must occur in less than a clock cycle.
I Reset line is sensitive to glitches at any time



Asynchronous Resets

I Asynchronous reset synchronization circuit
I Synchronization circuit required with asynchronous reset
I Circuit will provide asynchronous reset and synchronous deassertion



Asynchronous Resets
I Reset tree

I Routing and buffering of the reset tree almost as critical as the clock
tree

I Reset goes to every flip-flop, possibly 100’s of thousands
I Capacitive load is very large
I Reset deassertion must happen within 1 clock cycle and allow time

for reset recovery time



Resetting FPGAs

I FPGAs are initialized during configuration: all FFs, and memory

I ASICs must have an explicit reset to achieve initialization
I What happens here in both environments?

%lecture_verilog/beamer/example_code/init_ffs.sv

module init_ffs (

input clk,

output q_out_b,

input d_in

);

logic q_out = ’0; //initalize flip flop

always_ff @ (posedge clk)

q_out <= d_in;

assign q_out_b = q_out; //assign output

endmodule

I FPGA: FFs are initialized in hardware and simulation

I Hardware FFs get initialized by configuration

I Initialization statement resets simulation FFs



Resetting FPGAs

I What happens here in both environments? (cont.)
module init_ffs (

input clk,

output q_out_b,

input d_in

);

logic q_out = ’0; //initalize flip flop

always_ff @ (posedge clk)

q_out <= d_in;

assign q_out_b = q_out; //assign output

endmodule

I ASIC: Synopsis design compiler says:
Warning: init_ffs.sv:8: The ’declaration initial assignment’

construct is not supported. It will be ignored. (VER-104)



Resetting FPGAs

I Places for providing explicit reset
I High availability application requiring hot reset
I If clock drops out, need hard reset after PLL gets lock
I Comm channel: if it drops out, how do you reset the hardware?
I User push button reset
I Partial configuration will require reset of new logic
I IP (esp from ASIC sources) may require it
I Migration to ASIC from FPGA

I Reset not needed for some logic (pipelines)

I Reset is always needed for any logic with feedback


