
Verilog - Representation of Number Literals

”....... And here there be monsters!” (Capt. Barbossa)

Numbers are represented as:
<size>’<signed><radix>value (”<>” indicates optional part)

size The number of binary bits the number is comprised of. Not
the number of hex or decimal digits. Default is 32 bits.

’ A separator, single quote, not a backtick

signed Indicates if the value is signed. Either s or S can be used.
Not case dependent
Default is unsigned.

radix Radix of the number
’b or ’B : binary
’o or ’O : octal
’h or ’H : hex
’d or ’D : decimal
default is decimal

Verilog - Representation of Number Literals(cont.)

I Possible values for ”value” are dependent on the radix

Format Prefix Legal characters

binary ’b 01xXzZ ?

octal ’o 0-7xXzZ ?

decimal ’d 0-9

hexadecimal ’h 0-9a-fA-FxXzZ ?

I The underscore ” ” is a separator used to improve readability e.g.:
0010 1010 1110 0101 is easily read as 0x2AE5

I The character ”x” or ”X” represents unknown

I The character ”z” or ”Z” represents high impedance

I The character ”?” or ”?” same as Z (high impedance)

I The character ”?” is also ”don’t care” to synthesis

Verilog - Representation of Number Literals(cont.)

I If prefix is preceded by a number, number defines the bit width

I If no prefix given, number is assumed to be 32 bits

I Verilog expands <value > to fill given <size> working from LSB to
MSB.

I If <size> is smaller than ”value”
I MSB’s of ”value” are truncated with warning (tool dependent)

I If <size> is larger than ”value”
I MSB’s of ”value” are filled

I Regardless of MSB being 0 or 1, 0 filling is done

Left-most Bit Expansion

0 0 extend

1 0 extend

x X x or X extend

z Z z or Z extend

Verilog - Representation of Number Literals(cont.)

Some Examples:

reg [7:0] v = 8’b1011; initial $displayb ("v signed =\t", v);

//v = 00001011, MSBs filled with zeros

reg [7:0] w = 3’b1011; initial $displayb ("w signed =\t", w);

//w = 00000011, bit 3 truncated then 0 filled

//generates Modelsim compile warning (Redundant digits in numeric literal)

//Runs without warning or error

Verilog - Representation of Number Literals (cont.)
Literal numbers may be declared as signed: 4shf

I 4 bit number (1111) interpreted as a signed 2s complement value

I Decimal value is -1.

Signed values are not necessarily sign extended because the sign bit is the
MSB of the size, not the MSB of the value.

8’hA //unsigned value extends to: 00001010

8’shA //signed value extends to: 00001010

If the MSB of the size is one and is signed, sign extension will occur.

reg [11:0] p1 = 4’shA; initial $displayb ("p1 signed =\t", p1);

//p1 = 1111_1111_1010, bit 3 is the sign bit

reg [11:0] p2 = 5’shA; initial $displayb ("p2 signed =\t", p2);

//p2 = 0000_0000_1010, bit 3 was the sign bit, but was lost in extension

When the value is assgined to a bigger vector, the sign indication <s>,
will force sign extension when the MSB of value is one. If a signed
number such as 9shA6, (8 bits in 9 bit vector) is assigned to a bigger
vector the sign bit is lost and is not sign extended. Beware!

Verilog - Representation of Number Literals (cont.)

Literal numbers can also carry a sign: -4’sd15
This is equivalent to -(4’sd15) or -(-1) or 1.

We need to be careful with how an explicit sign is interpreted. See the
examples to follow.

Verilog - Representation of Number Literals (cont.)

Some examples:

module number_test;

reg [11:0] a = 8’shA6; initial $displayb ("a=", a);

// number 0xA6 is signed, MSB of size (7) is one, so its negative

// so to produce the 12 bit result, its sign extended with 1’s, thus

//a=1111_1010_0110

reg [11:0] b = 8’sh6A; initial $displayb ("b=", b);

// signed number 0x6A has MSB (7) is zero, its positive

// so to produce the 12 bit result, its sign extended with 0’s, thus

// b=0000_0110_1010

reg [11:0] c = ’shA6; initial $displayb ("c=", c);

//c is the signed number A6, but its MSB is zero as its 32 bits long

// c=0000_1010_0110, not sign extended

reg [11:0] d = ’sh6A; initial $displayb ("d=", d);

//signed, unsized number 6A has MSB (31) zero so its positive:

// 0000_0000_0000_0000_0000_0000_0110_1010

//assign the 32 bit value to 12 bits:

// d=0000_0110_1010

Verilog - Representation of Number Literals (cont.)
Some more examples:

reg [11:0] e = -8’shA6; initial $displayb ("e=", e);

//0xA6 is signed, expanded to 8 bits with MSB (7) one: 1010_0110

//negating this with a minus sign: (2’s compliment) : 0101_1010

//now assign with sign extension: e=0000_0101_1010

//i.e.; -(8’shA6) e=0000_0101_1010

reg [11:0] f = -’shA6; initial $displayb ("f=", f);

//0xA6 is signed, unsized, with MSB (31) zero, so its positive :

// 0000_0000_0000_0000_0000_0000_1010_0110

//taking twos complement we get:

// 1111_1111_1111_1111_1111_1111_0101_1010

//assigning to 12 bits (by truncation) we get

// f=1111_0101_1010

reg [11:0] g = 9’shA6; initial $displayb ("g=", g);

//0xA6 is signed with MSB (8) zero, so its positive: 0_1010_0110

//assign it to a 12-bit reg by sign extending: 0000_1010_0110

// g=0000_1010_0110

reg [11:0] h = 9’sh6A; initial $displayb ("h=", h);

//0x6A is signed with MSB (8) zero, so its positive: 0_0110_1010

//assign it to a 12-bit reg by sign extending: 0000_0110_1010

// h=0000_0110_1010

