
System Verilog - Part 3

I To create hierarchy and create combinatorial logic gates, we use the
always comb block.

I Inside the always comb block, we describe the behavior of
combinational logic in a sequential, algorithmic way with if, else,
while and case statements.

I These statements, inherited from procedural languages, provide a
powerful means of expression. We therefore refer to the
always comb block as a procedural block.

I Keep in mind that you are not writing a program, but instead you
are describing how the logic behaves.

I Digital logic does not ”execute” statement by statement but instead
it evaluates in a parallel ”all-at-once”, and ”all-the-time” fashion.

System Verilog - Part 3

I If there are multiple statements within always comb, they must be
bracketed with begin, end statements.

always_comb begin

prod_reg_ld_high = 1’b0; // statement 1

prod_reg_shift_rt = 1’b0; // statement 2

end // always_comb

I Single statements within always comb do not need begin, end.

always_comb

if (sel) d_out = din_1;

else d_out = din_0;

System Verilog - Part 3

I The if statement creates combinatorial logic that outputs a value
depending upon the value of a conditional expression.

I If the conditional expression evaluates true, the following signal
assignment is made. Othewise, that assignment is skipped and the
next statement is evaluated.

I Note use of blocking assignment.

module mux2_1 (

input sel ,

input din_0 ,

input din_1 ,

output logic d_out);

always_comb

if (sel) d_out = din_1;

else d_out = din_0;

endmodule

Synthesis Output

Note: ridiculously small module, example only

System Verilog - Part 3

I If there are multiple assignment statements they must be grouped
within a begin, end set.

module dual_mux2_1 (

input sel ,

input a,b,c,d,

output logic y0,

output logic y1);

always_comb

if (sel) begin y0 = b;

y1 = d;

end

else begin y0 = a;

y1 = c;

end

endmodule

Synthesis Output

System Verilog - Part 3

I The if statement tests a conditional expression to determine which
output assignment to make.

I If realtional operators are used in the conditional expression, logic
gates are added to the if statement.

I Commonly used relational operators used are:
I equals (==)
I not-equals (! =)
I greater-than (>)
I less-than (<)
I greater-than-or-equal-to (>=)
I less-than-or-equal-to (<=)

I How would you realize these operators in logic gates? Which would
be cheapest?

System Verilog - Part 3
I Four-bit, 2:1 Mux with 4-bit comparison operators.

if (a==b) z = c;

else z = d;

if (a<=b) z = c;

else z = d;

System Verilog - Part 3

I Wide comparisons can be produce lots of deep and thus slow logic.

if (a<=b) z = 1’b1;

else z = 1’b0;

System Verilog - Part 3

I The schematics seen here are produced by Synopsys Design
Compiler (aka ”dc shell”) using a standard cell logic library.

I FPGA combinational logic uses SRAM looktables.

I As such, an apples-to-apples comparison is not possible.

I However, standard cell synthesis indicates the complexity of inferred
gate structures.

I FPGA SRAM memories can be used to create wide logic structures
that have uniform delay paths. Why?

System Verilog - Part 3

I If an if statement has no else, synthesis has to make an
assumption as to what the newest value of the output is to be.

I The assumption, wrong or right, is to hold the last value. Note the
synthesis warning.

Warning: no_else_mux.sv:6:

Netlist for always_comb block contains a latch.

module no_else_mux (

input sel ,

input a,b,

output logic y0);

always_comb

if (sel) y0 = a;

// else

y0 = b; //else commented out

endmodule

Synthesis Output

System Verilog - Part 3

I The decision modifiers unique and priority reduce ambiguities
and can trap potential design errors early.

I What is the intention here? Priority or not? Note inferred latch.

module no unique(

input [2:0] sel , // selection input

input a,b,c,

output logic mux_out);

always_comb

if (sel == 3’b001) mux_out = a;

else if (sel == 3’b010) mux_out = b;

else if (sel == 3’b100) mux_out = c;

endmodule

System Verilog - Part 3
I The simulator evaluates if...else...if decisions in order and

synthesis creates priority logic enforcing priority so that RTL and
gate simulation behave identically.

I What if you didn’t care about order or priority? The unique

modifier lets you say so. The result is no priority logic.

module unique 1(

input [2:0] sel , // selection input

input a,b,c,

output logic mux_out);

always_comb

unique if (sel == 3’b001) mux_out = a;

else if (sel == 3’b010) mux_out = b;

else if (sel == 3’b100) mux_out = c;

endmodule

System Verilog - Part 3

I Another action of the unique modifier is to direct the simulator to
issue a run-time warning if none of the if branchs are executed.

I In our present example, a run-time warning would be issued if sel
was any other value than 1, 2, or 4.

I Note that the simulator output is ”x” for sel=3’b101. What would
the gate output be? Can real gates ever have an output of ”x”?

System Verilog - Part 3

I Since unique gives us a way to check to see if at least one branch is
taken, a ”concluding else” is not needed to prevent latches.

module unique 1(

input [2:0] sel , // selection input

input a,b,c,

output logic mux_out);

always_comb

unique if (sel == 3’b001) mux_out = a;

else if (sel == 3’b010) mux_out = b;

else if (sel == 3’b100) mux_out = c;

endmodule

System Verilog - Part 3

I Here, potential for overlapping conditions exist as any number of
conditions could be true at once.

module unique 2(

input [2:0] sel , // selection input

input a,b,c,

output logic mux_out);

always_comb

unique if (sel [0]) mux_out = a;

else if (sel [1]) mux_out = b;

else if (sel [2]) mux_out = c;

endmodule

I If unique removes priority encoding, the conditions must be
mutually exclusive. Therefore in this situation, unique acts as an
assertion, telling the simulator to issue a run-time warning if more
than one condition ever true.

System Verilog - Part 3
I Forcing sel[2:0] to 3’b011 makes the conditions non-mututally

exclusive and the simulator issues a warning.

force sel 16#3

run 100

Warning: (vsim-8360) unique2.sv(6):

The if/case statement is not unique.

Time: 200 ns Iteration: 0 Instance: /unique2

I This totally appropriate as if priority was enforced, the ”a” input
should have been chosen. The synthesis results show why.

System Verilog - Part 3

I unique if final points...
I At any point in time, unique causes the simulator to issue a

run-time warming if:
I more than one condition is true
I no condition is true and there is no else branch

I unique, informs the synthesis tool that:
I every legal condition has been listed
I the conditions are mutually exclusive
I no priority logic is required

I unique is placed just before the if.

I In a series of if...else decisions, unique is only specified for the
first if. All subsequent if statements within the sequence are
affected.

I Presently, Quartus does not support modifiers for if, only case.

System Verilog - Part 3

I The decision modifier priority points to the designer’s intention
that the order of decisions is important.

I Each conditional statement is evalualted in the order listed.

I An example would be a priority encoder.

module encoder(

input in0 , in1 , in2 , in3 ,

output logic [3:0] encoded_output;

always_comb

priority if (in0) encoded_output = 4’b0001;

else if (in1) encoded_output = 4’b0010;

else if (in2) encoded_output = 4’b0100;

else if (in3) encoded_output = 4’b1000;

endmodule

System Verilog - Part 3

I The priority encoder in operation:

I Note run-time warning in the first 100ns.

I Synthesis results are rather unexpected

System Verilog - Part 3

I Redraw schematic from the synthesis netlist. Is this right?

// ///

// Created by: Synopsys DC Expert(TM) in wire load mode

// Version : L-2016.03 - SP2

// ///

module encoder (in0 , in1 , in2 , in3 , encoded_output);

output [3:0] encoded_output;

input in0 , in1 , in2 , in3;

wire n3, n4;

assign encoded_output [0] = in0;

NOR3X0 U8 (.IN1(encoded_output [0]), .IN2(in2), .IN3(in1), .QN(encoded_output [3]));

NOR3X0 U9 (.IN1(n3), .IN2(in1), .IN3(encoded_output [0]), .QN(encoded_output [2]));

INVX0 U10 (.IN(in2), .QN(n3));

NOR2X0 U11 (.IN1(encoded_output [0]), .IN2(n4), .QN(encoded_output [1]));

INVX0 U12 (.IN(in1), .QN(n4));

endmodule

FILE: REVISION:

DRAWN BY: PAGE OF

TITLE

U11

U9

U10

U12

U8

n4

n3

encoder_output[0]

encoder_output[1]

encoder_output[2]

encoder_output[3]

in0

in1

in2

in3 no connect

System Verilog - Part 3

I priority if final points...
I At any point in time, priority causes the simulator to issue a

run-time warming if:
I no condition is true and there is no else branch

I priority, informs the synthesis tool that:
I every legal condition has been listed
I priority logic is required

I priority is placed just before the if.

I In a series of if...else decisions, priority is only specified for
the first if. All subsequent if statements within the sequence are
affected.

I Presently, Quartus does not support modifiers for if, only case.

