What did we forget? - Always Block

- Use System Verilog "always_comb"
- Use blocking assignment only
- System Verilog always_comb infers sensitivity list

```verilog
always_comb
    if(a)
        z = x;
    else
        z = y;
```
What did we forget? - Always Block

- Use System Verilog "always_ff"
- Use non-blocking assignment only

```verilog
always_ff @ (posedge clk, negedge reset_n)
    if(!reset_n) q <= '0;
    else q <= d;
```

- Any assignment under the always_ff clause infers flip-flops
- Assignment under "always @ (posedge clk...)" also!
Counters and shift regs are coded differently from state machines

Mixed combo logic and flip-flops under always_ff clause

```
//simple counter
always_ff @ (posedge clk, negedge reset_n)
    if(~reset_n) q_out <= 0;
    else if(en)  q_out <= q_out + 1;
```
What did we forget? - State Machines

Do it like this!

```verilog
module arbiter0(
    output reg gnt,
    input  clk, //clock input
    input rst_n, //asynchronous active low reset
    input  dly, //delay input
    input  done, //done input
    input  req  //request input
);
//define enumerated types and vectors for ps, ns
enum reg [1:0] {
    IDLE = 2'b00,
    BBUSY = 2'b01,
    BWAIT = 2'b10,
    BFREE = 2'b11,
    XX    = 'x }
arbiter_ps, arbiter_ns;

//infer the present state vector flip flops
always_ff @(posedge clk, negedge rst_n)
    if (!rst_n) arbiter_ps <= IDLE;
    else        arbiter_ps <= arbiter_ns;
always_comb begin
    arbiter_ns = XX;  //default, ns vector
    gnt      = 1'b0; //default, output signal
    case (arbiter_ps)
        IDLE :
            if (req)     arbiter_ns = BBUSY;
            else         arbiter_ns = IDLE;
        BBUSY: begin
            gnt = 1'b1;  //assert gnt
            if (!done)   arbiter_ns = BBUSY;
            else if (dly) arbiter_ns = BWAIT;
            else        arbiter_ns = BFREE;
        end
        BWAIT: begin
            gnt = 1'b1;  //assert gnt
            if (!dly)    arbiter_ns = BFREE;
            else         arbiter_ns = BWAIT;
        end
        BFREE: begin
            if (req)     arbiter_ns = BBUSY;
            else         arbiter_ns = IDLE;
        end
    endcase
end //always
endmodule
```
What did we forget? - Coding

- Keep Intent Clear
 - Clear intent implies transparency
 - Keep it simple as possible
 - Robustness is the child of transparency and simplicity
 - Eric Raymond
What did we forget? - Coding

- Keep Intent Clear
 - Clear intent implies transparency
 - Keep it simple as possible
 - Robustness is the child of transparency and simplicity
 - Eric Raymond
- If your code is good, someone else will read it.
 - Code accordingly
What did we forget? - Coding

- Keep Intent Clear
 - Clear intent implies transparency
 - Keep it simple as possible
 - Robustness is the child of transparency and simplicity
 - Eric Raymond
- If your code is good, someone else will read it.
 - Code accordingly
- Use sensible names. It really does matter
What did we forget? - Coding

- Keep Intent Clear
 - Clear intent implies transparency
 - Keep it simple as possible
 - Robustness is the child of transparency and simplicity
 - Eric Raymond
- If your code is good, someone else will read it.
 - Code accordingly
- Use sensible names. It really does matter
- Keep comments tracking with code changes
What did we forget? - Coding

- Code doesn’t work right?
 - Go back to your block diagrams
What did we forget? - Coding

- Code doesn’t work right?
 - Go back to your block diagrams
 - Check your state machines

- Check your timing diagram
- Then check your code

- Don’t keep on hacking using “design by simulator”
- Don’t go too low in the abstraction level: no gates
What did we forget? - Coding

- Code doesn’t work right?
 - Go back to your block diagrams
 - Check your state machines
 - Check your timing diagram
What did we forget? - Coding

- Code doesn’t work right?
 - Go back to your block diagrams
 - Check your state machines
 - Check your timing diagram
 - Then check your code
What did we forget? - Coding

► Code doesn’t work right?
 ► Go back to your block diagrams
 ► Check your state machines
 ► Check your timing diagram
 ► Then check your code
 ► Don’t keep on hacking using ”design by simulator”
What did we forget? - Coding

- Code doesn’t work right?
 - Go back to your block diagrams
 - Check your state machines
 - Check your timing diagram
 - Then check your code
 - Don’t keep on hacking using ”design by simulator”

- Don’t go too low in the abstraction level: no gates
What did we forget? - Coding

- One module per file
- MiXed CasEs caN bE dEAdLy. soMe TOolS are CaSE bllNd!
 - Eric’s examples were all lower case!
 - Constants should be ALL CAPS
- Don’t try out all the features of System Verilog
- If you can’t draw it, don’t code it
- This ain’t just another language, you’re makin’ hardware
- Bad RTL + synthesis = steaming pile of gates
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
- At the gate level, you only get to see the top level pins

..."Somebody said the other way didn’t work, this seems easier..."

..."Divide and conquer, simplify the case, THINK"
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
- At the gate level, you only get to see the top level pins
- Modelsim is hierarchical, descend to lower blocks when necessary
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
- At the gate level, you only get to see the top level pins
- Modelsim is hierarchical, descend to lower blocks when necessary
- Save wave setups in wave.do
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
- At the gate level, you only get to see the top level pins
- Modelsim is hierarchical, descend to lower blocks when necessary
- Save wave setups in wave.do
- ”Somebody said the other way didn’t work, this seems easier…”
What did we forget? - Debugging

- Read the cotton pickin’ transcripts!
- Read what the shell is telling you as well as the tools
- Google error messages. That’s right! Google’em!
- Fix the first error you find. Then fix those that follow
- At the gate level, you only get to see the top level pins
- Modelsim is hierarchical, descend to lower blocks when necessary
- Save wave setups in wave.do
- ”Somebody said the other way didn’t work, this seems easier…”
- ”Divide and conquer, simplify the case, THINK”
What did we forget? - Debugging

- Linux commands: Google and read
 - i.e., "compare files Linux"
What did we forget? - Debugging

- Linux commands: Google and read
 - i.e., ”compare files Linux”
- Don’t try ”random stuff”. Don’t confuse action with motion. We’re engineers, not the Federal Reserve
What did we forget? - Debugging

- Linux commands: Google and read
 - i.e., ”compare files Linux”
- Don’t try ”random stuff”. Don’t confuse action with motion. We’re engineers, not the Federal Reserve
- Please learn a programming editor. It hurts to watch some of you