What We Learned - ASICs

- High volume, high performance, custom digital logic IC
- ASICs are built with HDLs, not schematics
- ASICs are built with scripts, not GUIs
Our language of choice
Rapidly becoming a standard HDL
Describes the structure of digital logic, not an algorithm
Can't be treated like another language
If you can't draw it, don't try to code it
If you can't draw what you've coded, rewrite till you can
What We Learned - System Verilog

- We build digital logic by:
 - Making combo logic: always_comb or assign
 - Making Flip-flops: always_ff
What We Learned - System Verilog

state machines

always_ff for state storage

always_ff @(posedge clk, negedge rst_n)
 if (!rst_n) sm_ps <= IDLE; //at reset, go to idle state
 else sm_ps <= sm_ns; //otherwise, go to the next state

always_comb for next state assignment and outputs

always_comb begin
 sm_ns = XX; //default assignment, ns vector
 out_sig = 1'b0; //default assignment, output signal
 case (sm_ps)
 IDLE :
 if (req) sm_ns = BUSY;
 else sm_ns = IDLE;
 ...
 endcase
end //always

Keep FFs and ns logic separate for each state machine

Non blocking assignment under always_ff

Blocking assignment under always_comb
What We Learned - Digital Design

- Data path first
 - Make block diagram
- Control logic second
 - Create state machines and timing diagram
- Define everything, then begin coding
- Coding should be a typing speed limited, not designing
What We Learned - Digital Design

- Debug piece by piece
- Check with eyeballs, then testbench
- Testbench with TCL (dofiles), Verilog, diff
What We Learned - Synthesis

- Driven by constraints
- Different structure, but same functionality
- Clean RTL a must, intentions clear
- Garbage-in, Garbage-out still applies
What We Learned - Design for Test

- Required by ASIC process
- Checks manufacturing process, not functionality
- Excite fault, propagate out to pins
- Tester time, and I/O pins are expensive
- Need to test with minimal set of vectors
- Scan insertion can cause timing problems
What We Learned - ASIC Design Process

- Fully automate via scripts
- Bash, TCL, SVerilog, Perl, Python.....
- Self-documenting, repeatable process
What We Left out....

- Place and route with backannotation
- Usually not done by ASIC designers
- Clock uncertainty, routing delays resolved with new .sdf
- I/O shell wrapper