1 INDIGIT

EWARE’HERE )
RAGONS!

Centuries ago, Medieval
cartographers penned the
phrase Beware, here be
dragons on maps to indi-
cate uncharted territory.
Today, the same words of
caution should be applied
to the “X” value in digital
simulation. This value,
which is used to indicate
an unknown state, direct-
ly affects anyone using a
digital simulator; yet, few
users fully appreciate all of
its ramifications. This lack
of understanding can be
extremely unfortunate,
because the quality of
simulation results can be drastically compromised by the
underlying (and often incompatible) assumptions made by
the people who write simulation models and the poor souls
who end up having to use them.

Each digital simulator can represent a specific number of
logic values. For example, certain specialized simulators only
nsider signals as carrying logic O and logic 1 values, but
hers might consider 128 different values or more. Addi-
tionally, the way in which these values are represented and
evaluated varies among simulators. Some simulators employ
cross-product techniques; others prefer to use an interval-

CLIVE “MAX” MAXFIELD,
INTERGRAPH ELECTRONICS

Anyone using a digital simulator can expect to
encounter the dreaded “X" value, but there
are few who truly understand its precocious
sense of fun. This article tracks the nefarious
“X" to its lair and reveals why users should be
warned: Beware, here be dragons!

value approach.

Unfortunately, a detailed comparison of cross-product
versus interval-value logic sets is beyond the scope of this
article. For the purpose of this discussion, I will concentrate
on the (almost) universally available logic value subset com-
prising 0, 1, “X,” and “Z,” where “X” and “Z” represent
“unknown” and “high impedance,” respectively. However,
if you should happen to be overcome with a raging curiosi-
ty about the minutiae of logic value sets, feel free to email
me to request this topic for a future article.

Don’t know, don’t care

In addition to 0, 1, “X,” and “Z,” most hardware-descrip-
tion languages (HDLs) also support a “?” value, meaning
“don’t care.” In fact, “?s” aren’t true values in the sense that
they can't actually be assigned to outputs as driven states.
Instead, “?s” are predominantly used to describe the way in
which a model’s inputs should respond to any signals that

VHDL dwit cvie 3 =/

EDN OcToBER 12, 1995 = 139




DIGITAL SIMULATION

are presented to them. For example, consider the model for
a simple 2:1 multiplexer (Fig 1).

Although it’s conceivable to enumerate all of the possible
combinations of logic values that could be presented to the
inputs, the use of “?” values to indicate “don’t care” condi-
tions both eases the task of creating the model and more
accurately reflects the model’s intent.

For the sake of completeness (and to avoid receiving a
mailbag of irate letters), I should also note that some HDLs
do permit “don’t care” values to be assigned to outputs.
However, in this case, the “don’t cares” are intended for use
by a logic-synthesis utility and not by the digital simulator
itself. (The simulator automatically converts these assign-
ments into unknown “X” values at runtime.)

THE ”XS" OF THE FUTURE

The “X” value that we know and love toddy may not necessar-
ily be the same “X” we'll use in the future. There are a number
of possibilities for the evolution of “Xs” that developers of dig-
ital simulators might consider if designers feel they need such
capabilities.

Static vs dynamic “Xs”

One of the problems with current digital-simulation tech-
nology is that “Xs” represent multiple conditions, from a
steady-state, well-behaved unknown (which we might call a
“static X"), to an uncontrolled oscillation of unknown frequen-
¢y and unknown amplitude (which we might call a.“dynamic
X"). One solution is for both the designer and the simulator to
be able to distinguish between these extremes. For example,
we might use two symbols, “X” and “#X,” to represent static
and dynamic unknowns, respectively.

In this case, an uninitialized register element (Fig 2a) could
generate well-behaved “X” values, but two gates driving
incompatible values onto a common signal (Fig 2¢) could
result in a more pessimistic “#X” value. To illustrate a possible
application of these two values, consider a modified, pseudo-
HDL representation of a 2:1 multiplexer (Fig A).

Note that, unlike today’s digital simulators, in which the
model writer and the model user have to agree whether an
unknown applied to the select input would cause an optimistic
or pessimistic response at the output, the ability to differenti-
ate between “X” and “#X” would allow the model to respond
appropriately. in both cases.

Inverse “NOT Xs”

Today’s simulators do not consider the effect of inverting
“Xs.” For example, if an “X" is presented to the inpuit of a sim-
ple inverting logic function, the resulting output from the func-
tion is also “X.” Thus, another possibility for simulator devel-
opers is to introduce the concept of “NOT X,” which we might
represent as “~X.” The concept.of “~Xs” could greatly reduce
pessimism and aid the simulator in clearing: out uninitialized
unknown values (Fig B).

Obviously- this is a. contrived example, but it illustrates a

One of the most common traps novice simulation mod-
elers fall into involves the data-book convention of using
“X" characters to represent “don’t care” conditions. If the
model writer neglects to translate these into simulator
“don’t cares” (“?s"), then, somewhere down the line, some-
one is going to spend one heck of a long time trying to fig-
ure out what'’s happening—and I'm tired of that someone
being me.

What does “anknown” actually mean?

A significant problem with today’s digital simulators is
that they tend to use “Xs” to represent a variety of condi-
tions. For example, consider the circuit in Fig 2, which,
among other things, contains a D-type flip-flop (a), a loop

point. Assume that the circuit has recently powered up and the
registers contain unknown states. With today’s simulators, you
could apply clock pulses to clk1 infinitely without any useful
effect. However, if the simulator inherently. understood the
concept of “~X” (as shown in Fig B), then the first positive
edge on clk1 would cause the D2.q output to toggle from its
original “X” to an “~X" value. The simulator could be made to
recognize that one of these two values has to represent a |0*

0, which would cause the D2 fhp-ﬂop to be placed in its
state.

“Xs” with ID numbers

_As one final suggestion, consider giving each “X” a unique
ID number. Every “X” in existing simulators is indistinguishable
from its counterparts, which can result in -undue pessimism
(Fig C). ‘

Note that, even in the relatively simple case of an XOR gate,
the gate cannot recognize the fact that the “X” applied to both
of its inputs comes from a common source. If the simulator
could tell that both of these “Xs” were, in fact, the same, then
the output from the gate could be assigned the less-pessimistic
value of logic 0, which could aid in initializing other down-

2:1 MULTIPLEXER y:=CASE(sel}OF

a
> 0=>a;
Y 1=>b;
- =2
X=>a EQU b;
b » #X=>#X;
ENDCASE;

This pseudocode HDL example for a 2:1 multiplexer uses both
“X” and “#X" values.

140 = EDN OcTOBER 12, 1995




B |pesian Feature

formed from three inverters (b), and two tristate buffers dri-
ving the same node (c). In the case of (c), assume that both
of the tristate buffers are enabled, and that one is attempt-
ing to drive a logic 0 value while the other is attempting to
drive a logic 1.

In the case of (a), assume that power has recently been
applied to the system and that the register was powered up
with its “clear” input in the inactive state. Thus, the
unknown “X” value on the register’s output represents an
uninitialized state. Additionally, if we assume that sufficient
time has elapsed for the register to stabilize internally, then
it’s possible to say that this “X"” represents a good, stable logic
0 or logic 1-—even though we don’t know which particular
logic value it is.

path passes through several levels of"ﬂ gic—and then two or

--more of the paths reconverge at some point downstream. In
 fact, tracking “Xs” in this way would be similar in principle to

theway in which today’s dynamic timing analyzers resolve tim-
ing pessimism in circuits exhibiting reconvergent fanout, which

‘aiso known as common-mode-ambiguity.

Another, but perhaps less obvious, application of “Xs” with
1Ds could be in pinpointing the origin of-an “X.”-Assume that
you are running your first:pass simulation, you-are monitoring
only the primary-outputs - from the ¢ircuit; and, at some stage
during the simulation, you see some “Xs" in-the output wave-
form display. The problem is that these “Xs” couid have orlgr-

set

I "X "X

if simulators could support “~Xs,
pessimistic. ‘

nated.deep in the bowels of the curcurt thousands of tnme-steps

in the ‘past. With today’s simulators, your only recourse is to

rerun the sumulatlon and work our way back from the suspect
' resembles a salmon s struggle

swum upstream Howev
“would be feasible to C|IC '
form dlsplay, and

y:=CASE({sel,a,b}OF

FIGURE 1 EPWETR S

a e
— 0,0,2=>0;
. - ’y 0,1,2=>1;
3 3y == i)
1,2,0=50;
b » 1,2,1=>1;
ENDCASE;

This pseudocodé HDL for a 2:1 muitipiexer uses “?" (i’drni"t
care”) values as input assignments.

- those with individual IDs; would certainly slow the simulator

”Xs” are unduiy pessimistic, because, in this case, the outputs
should ideally be a 0.

originated at time 6854 nsec at gate G4569. Thus, to pinpoint and
isolate the problem quickly, you could immediately target the
offending gate and monitor all of the signals in its vicinity.

Wouldn’t it be nice if...

Each of the above suggestions (“X,” "#X,” “~X,” and “Xs
with 1Ds”) could be useful inisolation, but a combination could
dramatically-improve the quality of digital simulations. One

- downside to all of this theory is that even today's simple “Xs"

tend to impact simulation speed negatively, because they can

- procreate and propagate throughout a circuit-at a frightening

rate. The more sophisticated “Xs” discussed here, ‘especially

even further. - -
-~ However, there-are a number of ways to mitigate these detri-
mental effects. For example, one suggestion is.for the simula-

tor to only differentiate between “X,” “~X,” and “Xs with IDs"

during the time when the circuit is undergoing its initialization
sequence. Once the circuit has been initialized (at a user-spec-
ified time), the simulator could then revert to consrderlng only
“X" and “#X” values:

And, finally, | should point out that thrs excursion into the
world of “Wouldn’t it be nice if...” has only scratched the sur-
face of what's possible. Uitlmateiy, it’s you; the designers:in the

trenches, who will determine how srmuiatnon tools evolve in
- the future :

EDN OcToBER 12, 1995 » 141




BEZI | Desicn Feature B

DIGITAL SIMULATION

In the case of (b), the “X” generated by the inverter loop
actually represents a controlled oscillation between good
logic 0 and logic 1 values. Note that, in this context, “good”
refers to the fact that the output isn’t stuck at an intermedi-
ate voltage level, but that it is achieving real logic 0 and logic
1 thresholds.

Finally, in the case of (c), the output depends on the drive
strengths of the two tristate buffers. If the buffers are of rel-
atively equal strength, then the worst-case scenario is that
“X" potentially represents an uncontrolled oscillation of
unknown frequency and unknown amplitude.

In fact, some HDLs also support the concept of an unini-
tialized “U” value; for example, the VHDL “Standard Logic
Value” set as defined in the IEEE 1164 standard (this nine-
value set is sometimes unofficially referred to as MVL-9).
Back in Fig 2, the uninitialized “U” value can be used to dif-
ferentiate case (a) from cases (b) and (c). However, today’s
digital simulators don’t offer any way to differentiate
between cases (b) and (c).

Who makes the decisions around here?

If you're using digital simulation to verify a design, and if
your company creates its own simulation models, then it's
imperative for project leaders to decide and document what
they want “X” values to represent—or, more precisely, how
they want simulation models to deal with “Xs.” Consider
the case of a 2:1 multiplexer, which has logic 1 values pre-
sented to both of its data inputs and an “X” presented to its
“select” input (Fig 3). )

The decision to be made is what you want this model to
generate as its output. Remember that the simulator (and,
thus, the person writing the model) cannot differentiate
between “Xs,” and, therefore, that it's not possible to deter-
mine what any particular “X” represents. One option is to
assume that “Xs” are generally well-behaved; that is, an “Xr
represents a stable logic 0 or logic 1 (as in Fig 2a) or well-
defined oscillation (Fig 2b). If we assume that “Xs” are well-
behaved, then we may take an optimistic attitude: The out-
put from the multiplexer should be a logic 1 because, if both
of the inputs are logic 1, it doesn’t really matter which one
is being selected. On the other hand, if we acknowledge that
“Xs” may actually represent an uncontrolled oscillation of
unknown frequency and amplitude, then we should really
take the pessimistic approach and cause the output to drive
an “X.”

Whiners or thrill-seekers?

We can use the final decision to judge the project leaders’
cowardliness or aggressiveness. Is this group a bunch of cring-
ing whiners or reckless, irresponsible thrill-seekers looking for
an adrenaline-rush on the company’s budget? Actually, I'm
not advocating any particular view of “Xs” but am reinforc-
ing that someone, somewhere, has to make an informed deci-
sion. The absolute, worse-case scenario is for multiple mod-
elers to create different models without any documented
standard on how their models should view and handle “Xs.”
(If this were the case, then Murphy's Law dictates that differ-
ent modelers are guaranteed to use different approaches.)

142 = EDN OCTOBER 12, 1995

(c) TRISTATE BUFFERS

(b) INVERTER LOOP '

Digital “X” values can represent a variety of different cases:
for example, an uninitialized D-type register element (a), a
loop constructed using inverters (b), or two tristate buffers
attempting to drive opposing values (c).

Ultimately, without a company standard, the end user
doesn’t know what an individual model may do. If a desig
er uses two models with identical functions written by dNgP
ferent modelers, the models could respond differently to the
same stimulus, which is generally not considered an optimal
situation. Even worse, consider the case where one modet is
a high-power drive equivalent of the other: By exchanging
models to test the effects of using a different drive capabili-
ty, the designer may completely change his simulation
results, which can potentially consume endless man hours
before it's tracked down to the simulation models.

Similarly, in addition to internally developed models, it's
also necessary to define exactly what you expect when
you're acquiring models from outside sources—especially if
these models originate from multiple sources.

“Xs” and initialization

“X" values can perform a number of different (and, as
we've seen, often incompatible) roles in digital simulation,
but one very common role is that of indicating uninitialized
elements. In this case, some users take the view that every
memory element should power up containing “Xs,” and if
you can't clear them out as part of your initialization
sequence, then shame on you. .

But, in the real world, there’s no such thing as an “X,” and
designers are endlessly inventive in making use of the fact
that, in certain cases, it doesn’t matter whether a particular
element contains a logic O or a logic 1. For example, consid-
er a number of D-type registers configured as a divide-bi

counter. In some cases, the designer simply may not ¢
how the individual elements of the counter initializ
Although a purist would recommend using registers with
clear inputs, the overhead of tracking an additional clear sig-
nal around the circuit may be unacceptable to the designer.




B | Desian Fearure

DIGITAL SIMULATION

Similarly, in the case of RAM, generally one would expect
and require them to power up with “Xs” in the simulation
to indicate that they contain random logic 0 and logic 1 val-
ues. However, if the output from the RAM feeds into some
other logic, such as a state machine that has already been ini-
tialized, then the “Xs” from the RAM may escape into this
downstream logic and poison it.

Unfortunately, there is no all-embracing answer to satisfy
every situation. Almost every digital simulator allows you to
force a value onto a selected signal. For example, in the case
of the inverter loop in Fig 2b, it’s possible to force one of the
signals forming the loop to a logic 0, hold that value for a
sufficient amount of time for its effect to propagate around
the loop, and then remove the forced value to leave the loop
acting as an oscillator. However, be parsimonious in using
this technique, because you've just introduced something
into your simulation that does not reflect the circuit’s real-
world behavior. (It’s not uncommon for problems to arise at
a later date when the circuit is revised.) In particular, docu-
ment exactly what you've done and ensure that you alert
other tearn members whenever you use this methodology.

Another common technique is to use an internal simula-
tor function to randomly coerce uninitialized “X” values
into logic Os and logic 1s. This strategy can be very useful,
but, if the simulator supports it, you should restrain yourself
to targeting only specific trouble spots. Also, at a minimum,
ensure that you repeat the simulation with a variety of dif-
ferent, random seed values.

Perhaps the best advice to keep in mind is that hardware
initialization techniques should be employed wherever pos-
sible, and that simulator tricks should be used sparingly—
and with caution. It is not unheard of for a design to func-
tion in the simulation domain only to fail on the test bench
because the designer used the simulator to force conditions
that simply could not occur in the physical world.

“Xs” in mixed-signal environments

Last, but certainly not least, take particular care of “Xs” in
mixed-signal designs, in which a digital simulator is inter-
faced to, and simulating concurrently with, an analog sim-
ulator. Obviously, “X” values are absolutely meaningless in
the analog domain, so they have to be coerced into voltage
levels that correspond to logic Os and logic 1s as they are
passed from the digital simulator to its analog counterpart.

The problem is that the analog portion of the circuit can
act like an “X filter.” For example, consider a digital portion
of a circuit containing uninitialized “Xs” driving into an

. analog portion, which, in turn, feeds back into the digital

portion. The “Xs” are removed as the signals move across the
digital-to-analog boundary, but there’s no way to restore
them at the analog-to-digital interface. Thus, the down-
streamn digital portion of the circuit “sees” an optimistic view
of the world, which may lead portions of the circuit to
appear to be initialized when, in fact, they are not.

Some systems only offer the option to coerce the “X” val-
ues into logic Os (or logic 1s) as they are handed over to the
analog simulator. In general, avoid this technique at all
costs. Wherever possible, employ the technique of coercing

144 = EDN OcCTOBER 12, 1995

2:1 MULTIPLEXER

WHAT SHOULD THE OUTPUT
VALUE BE?

The way ih which “Xs" aré treated depends on the individual
model writer; for example, consider the case of an “X" value
applied to the select input of a 2:1 multiplexer.

the “Xs” to random logic Os and logic 1s. Additionally, some
systems combine an initial random assignment with the fact
that every subsequent “X” on that signal will be alternately
coerced to the opposite logic value of the one used previ-
ously. In all of these cases, plan on performing a number of
simulations using a variety of random seed values.

The moral of the story

Treat “X” values with both respect (they can be extrem
useful) and caution (they can potentiaily be the source
diverse and subtle problems). It is not enough to say that “Xs”
simply mean unknown, because we need to define what we
mean by “unknown.” Similarly, it’s essential that everyone
involved in creating and using a particular set of simulation
models is in complete agreement as to how they expect the
models to behave, both in the way the models generate “Xs”
and the way in which they respond to them. EDN

Author’s biography

Clive “Max” Maxfield is a member of the technical staff MTS)
at Intergraph Electronics (Huntsville, AL), where he specifies elec-
tronic-design-automation (EDA) products (phone (800) 837-
4237). You can reach him by email at crmaxfie@ingr.com. Max
is also the author of Bebop to the Boolean Boogie (An Uncon-
ventional Guide to Electronics). Phone HighText Publications
Inc (Solana Beach, CA) at (800) 247-6553.

VOTE
Please use the Information Retrieval Service card to rate this article
(circle one):
High Interest Low [nterest
598 600

Medium Interest




