
Ca
CASE Statement

Controls execution of one or more sequential statements.

Format:

CASE expression IS
 WHEN expression_value0 => sequential_stmt;
 WHEN expression_value1 => sequential_stmt;
END CASE;

Example:

--a four to one mux
mux: PROCESS (sel, a, b, c, d)
BEGIN
 CASE sel IS
 WHEN “00” => out <= a;
 WHEN “01” => out <= b;
 WHEN “10” => out <= c;
 WHEN “11” => out <= d;
 WHEN OTHERS => out <= ‘X’;
 END CASE ;
END PROCESS mux;

Either every possible value ofexpression_value must be
enumerated, or the last choicemust contain an OTHERS clause.
se and Others 1

Ca

d to

ut

l

CASE Implies equal priority

TheCASE statement implies equal priority to how the signals are assigne
the circuit. For example, we will repeat the previousIF example usingCASE.
To do so, we combine the selection signals into a bus and make the outp
selection on the bus value as shown below.

ARCHITECTURE tuesday OF example IS
 SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0);
 BEGIN
 select_bus <= (d & c & b & a); --make the select bus
 wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
 BEGIN
 CASE select_bus IS
 WHEN "0001" => vegatable <= potato;
 WHEN "0010" => vegatable <= carrot;
 WHEN "0100" => vegatable <= beet;
 WHEN "1000" => vegatable <= radish;
 WHEN OTHERS => vegatable <= spinach;
 END CASE;
 END PROCESS wow;
END ARCHITECTURE tuesday;

With the exception of spinach, the number of gate delays from each signa
input to output is four. The gate delays in theIF example varied from 1 to 8
gate delays. However, this function for CASE could be coded better.
se and Others 2

Ca

code
ee

 Its
d

Using CASE more effectively

In the previous example, there were 5 choices to choose from. We can en
this more fully by using 3 bits. What we are creating now is a mux. Lets s
how this example can be coded more efficiently:

ARCHITECTURE tuesday OF example IS
 BEGIN
 wow: PROCESS (select_bus, potato, carrot, beet, spinach, radish)
 BEGIN
 CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 WHEN OTHERS => vegatable <= ’X’;
 END CASE;
 END PROCESS wow;
END ARCHITECTURE tuesday;

The synthesized circuit looks like this:

This encoding of the desired function is much cleaner, faster and smaller.
seldom you get all three, so take it when you can. Examining the area an
delay numbers between this and theIF implementation shows the superiority
of CASE for this situation.

Be careful however, sometimesCASE may loose depending upon the
circumstances! Blanket statements about synthesis results with different
constructs should not be made. Examine each situation individually, and
THINK !
se and Others 3

Ca
Delay and area report: efficient CASE example

From area_report.txt:

Cell: example View: tuesday Library: work

 Cell Library References Total Area
 inv02 ami05_typ 1 x 1 1 gates
 mux21 ami05_typ 4 x 2 8 gates

Total accumulated area :
Number of gates: 8

From delay_report.txt
 Critical Path Report

Critical path #1, potato to vegatable 1.83

Critical path #2, beet to vegatable 1.83

Critical path #3, carrot to vegatable 1.82

Critical path #4, radish to vegatable 1.81

Critical path #5, select_bus(0) to vegatable 1.72

Critical path #6, select_bus(0) to vegatable 1.72

Critical path #7, select_bus(1) to vegatable 1.19

Critical path #8, spinach to vegatable 0.74

Critical path #9, select_bus(2) to vegatable 0.64

The comparison betweenIF andCASE for this example:

IF: area 8 gates, delay 3.42ns (worst path)
CASE: area 8 gates, delay 1.83ns (worst path)
se and Others 4

Ca

’
r the

is

be
wn

s

ut
t

ut
ic.

 a

hat
Use of OTHERS in MUXes

In the former example, theOTHERS clause assigned the output value of ‘X
for inputs other than those explicitly stated. There are two main reasons fo
use of ‘X’.

Simulation and debugging

Remember that we are using the 9 level logic type STD_LOGIC_1164. Th
type specifies that a signal can take on a “real world” set of values;
0,1,H,L,Z,X,W,U,-. All these values are included so that we simulate the
behavior or “real” circuits such as resistive pullups and pulldowns, tri-state
buffers and even initialized logic. An example of an uninitialized cell would
a flip flop output just after power is applied. Its output is considered unkno
or ‘U’ by the simulator while if its setup or hold time is violated, the flip flop’
output becomes unknown or ‘X’ immediately after the clock edge.

If a setup violation occurs during the simulation of a circuit, a flip flop’s outp
will go ‘X’. If the flip flop’s output forms the select input to a mux, what inpu
signal will be propagated to the output? In other words, if theselect_bussignal
becomes “0X1”, what input signal value willvegatabletake on. This is known
in polite circles as theX propagation issue.

If we chose another valid input for the OTHERS clause, the error (‘X’ outp
from a flip flop) in the simulation will not be propagated to downstream log
It will stop or be lost at the mux input because the select_bus value “0X1”
maps to a valid input. At the next clock cycle the flip flop may transition to
valid state, the simulation will continue and the error will go unnoticed. We
would rather have the ‘X’ propagate thorough the logic and “blow up” the
simulation so we can catch the error.

The code below is valid and wouldnot propagate the ‘X’ condition. It also
represents an “overly specified” circuit. It is overly specified in the sense t
surely all the possible values ofselect_bus should not map topotato. Giving
some degree of freedom actually produces a smaller gate realization.
se and Others 5

Ca

.

‘X’
Use of OTHERS (cont.)

--overly specified mux
CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 -- output potato for all other cases
 WHEN OTHERS => vegatable <= potato;
END CASE;

If we synthesize this circuit we get the following:

The gate realization of this overly specified mux is obviously a little messy
This also seen in the reports from synthesis.

The worst case path from the delay_report.txt gives us:
Critical path #1, beet to vegatable, 2.17ns

The gate count from area_report.txt gives us:
Number of gates: 11

This less than optimal solution leads to the second reason for the use of
here; logic minimization.
se and Others 6

Ca

utput
‘X’

the
ed in

lue, ‘-

 but
be
e

Use of OTHERS (cont.)

Logic minimization

The synthesis tool must choose from a library of cells to create the circuit
described by the HDL code. In the case of using the statement:

WHEN OTHERS => vegatable <= ’X’;

What does the synthesis tool do? There is no gate that can produce a ‘X’ o
except when malfunctioning. How can it make a set of gates to produce an
output? The answer is that it doesn’t.

Thesynthesizer treats the ‘X’ in this case as adon’t care. This is just like the
don’t care in a Karnough map. It allow the synthesis to optimize (reduce)
gate count if possible. The simulator treats the X as a value to be propagat
simulation if an error happens.

In fact, we can use another value in the mux statement; the don’t care va
’. So we could have coded the mux as follows:

--don’t do this!
CASE select_bus IS
 WHEN "000" => vegatable <= potato;
 WHEN "001" => vegatable <= carrot;
 WHEN "010" => vegatable <= beet;
 WHEN "011" => vegatable <= radish;
 WHEN "100" => vegatable <= spinach;
 WHEN OTHERS => vegatable <= ’-’;
END CASE;

This would allow the same optimizations as the ‘X’ for the OTHERS case
the behavior of the simulation in the case of a ‘-’ being propagated could
library and simulator dependent. This wouldNOT be a be a good way to cod
a mux even though the synthesized circuit is identical to the mux with the
OTHERS statement using ‘X’.
se and Others 7

Ca

),

t, the
.

Use of OTHERS (conclusion)

By using the statement:

WHEN OTHERS => vegatable <= ’X’;

the synthesizer can create a small, fast circuit that behaves properly.

One basic premise of how we want to code our designs is that we want the
simulation of our code to act exactly as the gate implementation. If a real
mux had a metastable (think ‘X’) input, the output would be metastable (X
not some valid (0 or 1) state.

The proper use of the don’t care operator is found in creating complex
combinatorial logic and in state machine state assignments. In that contex
don’t care operator really shines. We will see some examples of this soon
se and Others 8

	CASE Statement
	Controls execution of one or more sequential statements.
	Format:
	CASE expression IS WHEN expression_value0 => sequential_stmt; WHEN expression_value1 => sequentia...

	Example:
	--a four to one mux mux: PROCESS (sel, a, b, c, d) BEGIN CASE sel IS WHEN “00” => out <= a; WHEN ...

	Either every possible value of expression_value must be enumerated, or the last choice must conta...

	CASE Implies equal priority
	The CASE statement implies equal priority to how the signals are assigned to the circuit. For exa...
	ARCHITECTURE tuesday OF example IS SIGNAL select_bus : STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN select...

	With the exception of spinach, the number of gate delays from each signal input to output is four...

	Using CASE more effectively
	In the previous example, there were 5 choices to choose from. We can encode this more fully by us...
	ARCHITECTURE tuesday OF example IS BEGIN wow: PROCESS (select_bus, potato, carrot, beet, spinach,...

	The synthesized circuit looks like this:
	This encoding of the desired function is much cleaner, faster and smaller. Its seldom you get all...
	Be careful however, sometimes CASE may loose depending upon the circumstances! Blanket statements...

	Delay and area report: efficient CASE example
	From area_report.txt:
	*** Cell: example View: tuesday Library: work...
	Total accumulated area : Number of gates: 8

	From delay_report.txt
	Critical Path Report
	Critical path #1, potato to vegatable 1.83
	Critical path #2, beet to vegatable 1.83
	Critical path #3, carrot to vegatable 1.82
	Critical path #4, radish to vegatable 1.81
	Critical path #5, select_bus(0) to vegatable 1.72
	Critical path #6, select_bus(0) to vegatable 1.72
	Critical path #7, select_bus(1) to vegatable 1.19
	Critical path #8, spinach to vegatable 0.74
	Critical path #9, select_bus(2) to vegatable 0.64
	The comparison between IF and CASE for this example:
	IF: area 8 gates, delay 3.42ns (worst path) CASE: area 8 gates, delay 1.83ns (worst path)

	Use of OTHERS in MUXes
	In the former example, the OTHERS clause assigned the output value of ‘X’ for inputs other than t...
	Simulation and debugging
	Remember that we are using the 9 level logic type STD_LOGIC_1164. This type specifies that a sign...
	If a setup violation occurs during the simulation of a circuit, a flip flop’s output will go ‘X’....
	If we chose another valid input for the OTHERS clause, the error (‘X’ output from a flip flop) in...
	The code below is valid and would not propagate the ‘X’ condition. It also represents an “overly ...

	Use of OTHERS (cont.)
	--overly specified mux CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegata...
	If we synthesize this circuit we get the following:
	The gate realization of this overly specified mux is obviously a little messy. This also seen in ...
	The worst case path from the delay_report.txt gives us: Critical path #1, beet to vegatable, 2.17ns
	The gate count from area_report.txt gives us: Number of gates: 11
	This less than optimal solution leads to the second reason for the use of ‘X’ here; logic minimiz...

	Use of OTHERS (cont.)
	Logic minimization
	The synthesis tool must choose from a library of cells to create the circuit described by the HDL...
	The synthesizer treats the ‘X’ in this case as a don’t care. This is just like the don’t care in ...
	In fact, we can use another value in the mux statement; the don’t care value, ‘- ’. So we could h...
	--don’t do this! CASE select_bus IS WHEN "000" => vegatable <= potato; WHEN "001" => vegatable <=...
	This would allow the same optimizations as the ‘X’ for the OTHERS case but the behavior of the si...

	Use of OTHERS (conclusion)
	By using the statement: WHEN OTHERS => vegatable <= ’X’; the synthesizer can create a small, fast...
	One basic premise of how we want to code our designs is that we want the simulation of our code t...
	The proper use of the don’t care operator is found in creating complex combinatorial logic and in...

