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Data Types and Operators

Data types identify a set of values an object may assume and the
operations that may be performed on it.

VHDL data type classifications:

• Scalar: numeric, enumeration and physical objects

• Composite: Arrays and records

• Access: Value sets that point to dynamic variables

• File: Collection of data objects outside the model

Certain scalar data types are predefined in apackage called “std”
(standard) and do not require a type declaration statement.

Examples:

• boolean(true, false)

• bit (‘0’, ‘1’)

• integer (-2147483648 to 2147483647)

• real (-1.0E38 to 1.0E38)

• character (ascii character set)

• time (-2147483647 to 2147483647)

Type declarations are used through constructs calledpackages.

We will use the package calledstd_logic_1164 in our class. It
contains the common types, procedures and functions we
normally need.

A package is a group of related declarations and subprograms
that serve a common purpose and can be reused in different parts
of many models.
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Using std_logic_1164

The packagestd_logic_1164 is the package standardized by the
IEEE that represents a nine-state logic value system known as
MVL9.

To use the package we say:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

The library clause makes a selected library containing desired
packages “visible” to a model.

The use clause makes the library packages visible to the model.

USE clause format:

USE symbolic_library.pkg_name.elements_to_use

The nameieee is asymbolic name. It is “mapped” to:

/usr/local/apps/mti/current/modeltech/ieee

 using the MTI utility vmap.

You can see all the currently active mappings by typing:vmap

We do not have to declare a library work. Its existence and
location “./work” is understood.
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Using std_logic_1164

The nine states of std_logic_1164:
(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

PACKAGE std_logic_1164 IS
---------------------------------------------
-- logic state system (unresolved)
---------------------------------------------
  TYPE std_ulogic IS (
‘U’, -- Uninitialized; the default value
‘X’, -- Forcing Unknown; bus contention
‘0’, -- Forcing 0; logic zero
‘1’, -- Forcing 1; logic one
‘Z’, -- High Impedance; 3-state buffer
‘W’, -- Weak Unknown; bus terminator
‘L’, -- Weak 0; pull down resistor
‘H’, -- Weak 1; pull up resistor
‘-’  -- Don’t care; used for synthesis);

Why would we want all these values for signals?
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VHDL Operators

Object type also identifies the operations that may be performed
on an object.

Operators defined for predefined data types in decreasing order
of precedence:

• Miscellaneous: **, ABS, NOT

• Multiplying Operators:  *, /, MOD, REM

• Sign:  +, -

• Adding Operators:  +, -,&

• Shift Operators: ROL, ROR, SLA, SLL, SRA, SRL

• Relational Operators: =, /=, <, <=, >, >=

• Logical Operators: AND, OR, NAND, NOR, XOR, XNOR

Not all these operators are synthesizable.
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Overloading

Overloading allows standard operators to be applied to other
user-defined data types.

An example of overloading is the function “AND”, defined as:
(/usr/local/apps/mti/current/modeltech/vhdl_src/ieee/stdlogic.vhd)

FUNCTION “and” (l : std_logic; r : std_logic)
RETURN UX01;

FUNCTION “and” (l, r: std_logic_vector )
RETURN std_logic_vector;

For Examples

SIGNAL result0, signal1, signal2 : std_logic;
SIGNAL result1 : std_logic_vector(31 DOWNTO 0);
SIGNAL signal3 : std_logic_vector(31 DOWNTO 0);
SIGNAL signal4 : std_logic_vector(31 DOWNTO 0);

BEGIN
result0 <= signal1 AND signal2; -- simple AND
result1 <= signal3 AND signal4; -- many ANDs
END;

If we synthesize this code, what gate realization will we get?
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