
Ge
GENERATE

VHDL provides the GENERATE statement to create well-
patterned structures easily.

Any VHDL concurrent statement can be included in a
GENERATE statement, including another GENERATE
statement.

Two ways to apply

• FOR scheme

• IF scheme

FOR Scheme Format:

label : FOR identifier IN range GENERATE
 concurrent_statements;
END GENERATE [label];
nerate 1

Ge
Generate Statement - FOR scheme

ARCHITECTURE test OF test IS
COMPONENT and02
 PORT(a0 : IN std_logic;
 a1 : IN std_logic;
 y : OUT std_logic);
 END COMPONENT and02;

BEGIN
 G1 : FOR n IN (length-1) DOWNTO 0 GENERATE
 and_gate:and02
 PORT MAP(a0 => sig1(n),
 a1 => sig2(n),
 y => z(n));
 END GENERATE G1;
END test;

With the FOR scheme

• All objects created are similar.

• The GENERATE parameter must be discrete and is undefined
outside the GENERATE statement.

• Loop cannot be terminated early

Note: This structure could have been created by:

 sig3 <= sig1 AND sig2;

provided the AND operator was overloaded for vector operations.

A B
Z

A B
Z

A B
Z

A B
Z

A B
Z

A B
Z

A B
Z

A B
Z

sig1(7:0)

sig2(7:0)

sig3(7:0)
nerate 2

Ge
Generate Statement - IF scheme

Allows for conditional creation of components.

Can’t use ELSE or ELSIF clauses.

IF Scheme Format:

label : IF (boolean_expression) GENERATE
 concurrent_statements;
END GENERATE [label];

The next slide will show how we can use both FOR and IF
schemes.
nerate 3

Ge
Use of GENERATE - An example

Suppose we want to build an 8-bit shift register.

Suppose furthermore that we had previously defined the following
components:

ENTITY dff IS
 PORT(d, clk, en : IN std_logic;
 q, qn : OUT std_logic);
 END ENTITY dff;

ENTITY mux21 IS
 PORT(a, b, sel : IN std_logic;
 z : OUT std_logic);
 END ENTITY mux21;

D

CLK

QE

D

CLK

QE

D

CLK

QE

D

CLK

QE

shift
scan_in

clk
enable

d(0) d(1) d(2)

q(0) q(1) q(2)

d(7)

q(7)
nerate 4

Ge
GENERATE

From the block diagram we know what the entity should look like.

ENTITY sr8 IS
 PORT(
 din : IN std_logic_vector(7 DOWNTO 0);
 sel : IN std_logic;
 shift : IN std_logic;
 scan_in : IN std_logic;
 clk : IN sed_logic;
 enable : IN std_logic;
 dout : OUT std_logic_vector(7 DOWNTO 0));

Within the architecture statement we have to declare the
components within the declaration region before using them. This
is done as follows:

ARCHITECTURE example OF sr8 IS
--declare components in declaration area
COMPONENT dff IS
 PORT(d, clk, en : IN std_logic;
 q, qn : OUT std_logic);
 END COMPONENT;
COMPONENT mux21 IS
 PORT(a, b, sel : IN std_logic;
 z : OUT std_logic);
 END COMPONENT;

Component declarations look just like entity clauses, except
COMPONENT replaces ENTITY. Use cut and paste to prevent
mistakes!
nerate 5

Ge
Generate

After the component declarations, we declare the internal signal.

SIGNAL mux_out : std_logic_vector(7 DOWNTO 0);

With loop and generate statements, instantiate muxes and dff’s.

BEGIN
 OUTERLOOP: FOR i IN 0 TO 7 GENERATE
 INNERLOOP1: IF (i = 0) GENERATE
 MUX: mux21 PORT MAP(a => d(i),
 b => scan_in,
 z => mux_out(i));
 FLOP: dff PORT MAP(d => mux_out(i),
 clk => clk,
 en => enable,
 q => dout(i)); --qn not listed
 END GENERATE INNERLOOP1;
 INNERLOOP2: IF (i > 0) GENERATE
 MUX: mux21 PORT MAP(a => d(i),
 b => dout(i-1),
 z => mux_out(i));
 FLOP: dff PORT MAP(d => mux_out(i),
 clk => clk,
 en => enable,
 q => dout(i),
 qn => OPEN); --qn listed as OPEN
 END GENERATE INNERLOOP2;
 END GENERATE OUTERLOOP;
END example;
nerate 6

	GENERATE
	VHDL provides the GENERATE statement to create well- patterned structures easily.
	Any VHDL concurrent statement can be included in a GENERATE statement, including another GENERATE...
	Two ways to apply
	• FOR scheme
	• IF scheme

	FOR Scheme Format:
	label : FOR identifier IN range GENERATE concurrent_statements; END GENERATE [label];

	Generate Statement - FOR scheme
	ARCHITECTURE test OF test IS COMPONENT and02 PORT(a0 : IN std_logic; a1 : IN std_logic; y : OUT ...
	With the FOR scheme
	• All objects created are similar.
	• The GENERATE parameter must be discrete and is undefined outside the GENERATE statement.
	• Loop cannot be terminated early

	Note: This structure could have been created by: sig3 <= sig1 AND sig2; provided the AND operator...

	Generate Statement - IF scheme
	Allows for conditional creation of components.
	Can’t use ELSE or ELSIF clauses.
	IF Scheme Format:
	label : IF (boolean_expression) GENERATE concurrent_statements; END GENERATE [label];

	The next slide will show how we can use both FOR and IF schemes.

	Use of GENERATE - An example
	Suppose we want to build an 8-bit shift register.
	Suppose furthermore that we had previously defined the following components:
	ENTITY dff IS PORT(d, clk, en : IN std_logic; q, qn : OUT std_logic); END ENTITY dff;
	ENTITY mux21 IS PORT(a, b, sel : IN std_logic; z : OUT std_logic); END ENTITY mux21;

	GENERATE
	From the block diagram we know what the entity should look like.
	ENTITY sr8 IS PORT(din : IN std_logic_vector(7 DOWNTO 0); sel : IN std_logic; shift : IN std_log...

	Within the architecture statement we have to declare the components within the declaration region...
	ARCHITECTURE example OF sr8 IS --declare components in declaration area COMPONENT dff IS PORT(d, ...

	Component declarations look just like entity clauses, except COMPONENT replaces ENTITY. Use cut a...

	Generate
	After the component declarations, we declare the internal signal.
	SIGNAL mux_out : std_logic_vector(7 DOWNTO 0);

	With loop and generate statements, instantiate muxes and dff’s.
	BEGIN OUTERLOOP: FOR i IN 0 TO 7 GENERATE INNERLOOP1: IF (i = 0) GENERATE MUX: mux21 PORT MAP(a =...

