
Int
Introduction to HDL Design

Traditionally, digital design was done with schematic entry.

In today’s competitive business environment, building cost-
effective products quickly is best done with a top down
methodology utilizing hardware description languages (HDLs)
and synthesis.

Schematic entry still used at the board level, but this will probably
also change.

As a first example of the power of using HDLs, consider the code
below. It implements a 8 bit shift register with enable. It is
easially changed to about any width with a few quick key strokes.
In the amount of time it takes to sneeze, it can be synthesized into
the schematic on the next page.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_vector_arith.ALL;

ENTITY shift_reg IS
 PORT(
 clk_50 : IN STD_LOGIC; --50Mhz input clock
 reset_n : IN STD_LOGIC; --reset async active low
 data_ena : IN STD_LOGIC; --serial data enable
 serial_data : IN STD_LOGIC; --serial data
 parallel_data : BUFFER STD_LOGIC_VECTOR(7 DOWNTO 0)
);
 END shift_reg;

 ARCHITECTURE struct OF shift_reg IS
 BEGIN
shift_register:
 PROCESS (clk_50, reset_n, data_ena, serial_data, parallel_data)
 BEGIN
 IF (reset_n = ’0’) THEN
 parallel_data <= "00000000";
 ELSIF (clk_50’EVENT AND clk_50 = ’1’) THEN
 IF (data_ena = ’1’) THEN
 parallel_data(7) <= serial_data; --input gets input data
 FOR i IN 0 TO 6 LOOP
 parallel_data(i) <= parallel_data(i+1); --all other bits shift down
 END LOOP;
 ELSE
 parallel_data <= parallel_data;
 END IF;
 END IF;
 END PROCESS shift_register;
roduction to HDL Design 1

Int
Synthsized 8-Bit Shift Register

0

clk_50

serial_data

parallel_data(7:0)

ix178

Y

ix158

B0

A0

A1

ix168

B0

A1

A0

data_ena

reset_n

D

Q

QB

R

ix188

A0

A1

B0

Y

Y

Y

ix126

A0

A1

Y

ix116

A0

A1

Y

A0

A1

Y

ix146

A0

A1

Y

ix136

A0

A1

Y

ix176

A0

A1

Y

ix166

A0

A1

Y

ix156

Y

ix237

A Y

ix239

A Y

ix186

A0

A1

A0

A1

B0

Y

ix200

A Y

ix224

A

A0

A1

B0

Y

ix128

A0

A1

B0

Y

ix118

A0

A1

B0

Y

ix148

A0

A1

B0

Y

ix138

QB

R

ix130

CLK

D

Q

QB

R

ix120

CLK

CLK

D

Q

QB

R

ix140

CLK

D

Q

Q

QB

R

ix160

CLK

D

Q

QB

R

ix150

ix180

CLK

D

Q

QB

R

ix170

CLK

D

7

7

7

ix190

CLK

D

Q

QB

R

4

5

5

5

6

6

6

2

3

3

3

4

4

0

1

1

1

2

2

2x

2x

2x

2x
roduction to HDL Design 2

Int

y

HDLs - Motivation

Increased productivity
shorter development cycles, more features, but........
still shorter time-to-market, 10-20K gates/day/engineer

Flexible modeling capabilities.
can represent designs of gates or systems
description can be very abstract or very structural

Design reuse is enabled.
packages, libraries, support reusable, portable code

Design changes are fast and easily done
convert a 8-bit register to 64-bits........
four key strokes, and its done!
exploration of alternative architectures can be done quickl

Use of various design methodologies.
top-down, bottom-up, complexity hiding (abstraction)

Technology and vendor independence.
same code can be targeted to CMOS, ECL, GaAs
same code for: TI, NEC, LSI, TMSC
same code for: .5um, .35um, .25um, .18um

Enables use of logic synthesis which allows a investigation of the
area and timing space.

ripple adder or CLA?, How many stages of look ahead?

HDLs can leverage software design environment tools.
vi, emacs, cvs, lint, grep, make files

Using a standard language promotes clear communication of
ideas and designs.

schematic standards?... what’s that... a tower of Babel.
roduction to HDL Design 3

Int
HDLs - What are they? How do we use them?

A Hardware Description Language (HDL) is a programming
language used to model the intended operation of a piece of
hardware.

An HDL can facilitate:
abstract behavioral modeling

-no structural or design aspect involved
hardware structure modeling

-a hardware structure is explicitly implied

In this class we will use an HDL to describe the structure of a
hardware design.

When we use an HDL to create hardware by logic synthesis, we
will write code at theRegister Transfer Language (RTL)level. At
this level we are implying certain hardware structures when we
understand apriori.

When programming at the RTL level, weare not describing an
algorithm which some hardware will execute,wearedescribinga
hardware structure.

Without knowing beforehand what the structure is we want to
build, use of an HDL will probably produce a steaming pile (think
manure) of gates which may or may not function as desired.

You must know what you want to buildbefore you describe it in
an HDL.

Knowing an HDL does not relieve you of thoroughly
understanding digital design.
roduction to HDL Design 4

Int

s

HDL’s- VHDL or Verilog

We will use VHDL as our HDL.

VHDL
more capable in modeling abstract behavior
more difficult to learn
strongly typed
85% of FPGA designs done in VHDL

Verilog
easier and simpler to learn
weakly typed
85% of ASIC designs done with Verilog (1993)

The choice of which to use is not based solely on technical
capability, but on:

personal preferences
EDA tool availability
commercial business and marketing issues

We use VHDL because
strong typing keeps students from getting into trouble
if you know VHDL, Verilog can be picked up in few weeks
If you know Verilog, learning VHDL will take several month

The Bottom line...Either language is viable. Employers don’t care
as long as you know one of them.
roduction to HDL Design 5

Int

its

ere
s a

e

as the

l

VHDL - Origins

Roots of VHDL are in the Very High Speed Integrated Circuit
(VHSIC) Program launched in 1980 by the US Department of
Defense (DOD).

The VHSIC program was an initiative by the DOD to extend
integration levels and performance capabilities for military integrated circu
to meet or exceed those available in commercial ICs.

The project was successful in that very large, high-speed circuits w
able to be fabricated successfully. However, it became clear that there wa
need for a standard programming language to describe and document th
function and structure of these very complex digital circuits.

Therefore, under the VHSIC program, the DOD launched another
program to create a standard hardware description language. The result w
VHSIC hardware description language or VHDL.

The rest is history...

In 1983, IBM, TI and Intermetrics were awarded the contract to
develop VHDL.

In 1985, VHDL V7.2 released to government.

In 1987, VHDL became IEEE Standard 1076-1987.

In 1993, VHDL restandardized to clarify and enhance the
language resulting in VHDL Standard 1076-1993.

In 1993, development began on the analog extension to VHDL,
(VHDL-AMS).

Extends VHDL to non-digital devices and micro electromechanica
components. This includes synthesis of analog circuits.
roduction to HDL Design 6

Int
Some Facts of Life (For ASIC designers)

The majority of costs are determined by decisions made early in
the design process.

“Hurry up and make all the mistakes. Get them out of the way!”

“Typical” ASIC project: concept to first silicon about 9 months.

95% of designs work as the specification states.

60% of designs fail when integrated into the system.
The design was not the right one, but it “works”.

Technology is changing so fast, the only competitive advantage is
to learn faster than your competitors.

To design more “stuff” faster, your level of abstraction in design
must increase.

Using HDLs will help to make digital designers successful. (and
employed!)
roduction to HDL Design 7

	Introduction to HDL Design
	Traditionally, digital design was done with schematic entry.
	In today’s competitive business environment, building cost- effective products quickly is best do...
	Schematic entry still used at the board level, but this will probably also change.
	As a first example of the power of using HDLs, consider the code below. It implements a 8 bit shi...
	LIBRARY ieee; USE ieee.std_logic_1164.ALL; USE ieee.std_logic_vector_arith.ALL; ENTITY shift_reg ...

	Synthsized 8-Bit Shift Register
	HDLs - Motivation
	Increased productivity shorter development cycles, more features, but........ still shorter time-...
	Flexible modeling capabilities. can represent designs of gates or systems description can be very...
	Design reuse is enabled. packages, libraries, support reusable, portable code
	Design changes are fast and easily done convert a 8-bit register to 64-bits........ four key stro...
	Use of various design methodologies. top-down, bottom-up, complexity hiding (abstraction)
	Technology and vendor independence. same code can be targeted to CMOS, ECL, GaAs same code for: T...
	Enables use of logic synthesis which allows a investigation of the area and timing space. ripple ...
	HDLs can leverage software design environment tools. vi, emacs, cvs, lint, grep, make files
	Using a standard language promotes clear communication of ideas and designs. schematic standards?...

	HDLs - What are they? How do we use them?
	A Hardware Description Language (HDL) is a programming language used to model the intended operat...
	An HDL can facilitate: abstract behavioral modeling -no structural or design aspect involved hard...
	In this class we will use an HDL to describe the structure of a hardware design.
	When we use an HDL to create hardware by logic synthesis, we will write code at the Register Tran...
	When programming at the RTL level, we are not describing an algorithm which some hardware will ex...
	Without knowing beforehand what the structure is we want to build, use of an HDL will probably pr...
	You must know what you want to build before you describe it in an HDL.
	Knowing an HDL does not relieve you of thoroughly understanding digital design.

	HDL’s- VHDL or Verilog
	We will use VHDL as our HDL.
	VHDL more capable in modeling abstract behavior more difficult to learn strongly typed 85% of FPG...
	Verilog easier and simpler to learn weakly typed 85% of ASIC designs done with Verilog (1993)
	The choice of which to use is not based solely on technical capability, but on: personal preferen...
	We use VHDL because strong typing keeps students from getting into trouble if you know VHDL, Veri...
	The Bottom line...Either language is viable. Employers don’t care as long as you know one of them.

	VHDL - Origins
	Roots of VHDL are in the Very High Speed Integrated Circuit (VHSIC) Program launched in 1980 by t...
	The project was successful in that very large, high-speed circuits were able to be fabricated suc...
	Therefore, under the VHSIC program, the DOD launched another program to create a standard hardwar...

	The rest is history...
	In 1983, IBM, TI and Intermetrics were awarded the contract to develop VHDL.
	In 1985, VHDL V7.2 released to government.
	In 1987, VHDL became IEEE Standard 1076-1987.
	In 1993, VHDL restandardized to clarify and enhance the language resulting in VHDL Standard 1076-...
	In 1993, development began on the analog extension to VHDL, (VHDL-AMS). Extends VHDL to non-digit...

	Some Facts of Life (For ASIC designers)
	The majority of costs are determined by decisions made early in the design process. “Hurry up and...
	“Typical” ASIC project: concept to first silicon about 9 months.
	95% of designs work as the specification states.
	60% of designs fail when integrated into the system. The design was not the right one, but it “wo...
	Technology is changing so fast, the only competitive advantage is to learn faster than your compe...
	To design more “stuff” faster, your level of abstraction in design must increase.
	Using HDLs will help to make digital designers successful. (and employed!)

