State Machines in VHDL

Implementing state machines in VHDL is fun and easy provided you stick to
some fairly well established forms. These styles for state machine coding given
here is not intended to be especially clever. They are intended to be portable,
easily understandable, clean, and give consistent results with almost any
synthesis tool.

The format for coding state machines follows the general structure for a state
machine. Lets look at the basic Moore machine structure.

present_state

L next state LIERIEL QJ—VOUTIDUt signals
decode logi¢
INPULS =
R
clock ([D

reset

The Moore state machine consists of two basic blocks, next state decode (or
steering) logic, and some state storage usually (always for our case) D-type flip
flops. Inputs are applied to the next state decode block along with the present
state to create the next state output. The flip flops simply hold the value of the
present state. In the example above, the only output signals are the outputs of
the state flip flops. Alternatively, the flip flop outputs could be decoded to
create the output signals.

For a first example we will look at the state machine in TAS which holds the
state of what type of header is being receivalting or temp_pktFirst we
look at the state diagram.

State Machines in VHDL 1

State Diagram for header _type sm

header_type sm

outputs: state only byte assembled*
byte_cnt_ps = header*
ab or _c3
reset

byte assembled*
byte cnt_ps = byted

All your state machines should be documented in roughly this fashion. The
name of the process holding the code for the state machine is the name of the
state machine. In this case ihisader_type_sm.

Every state machine has an arc from “reset”. This indicates what state the state
machine goes to when a reset is applied. The diagram is worthless without
knowing what the initial state is.

Each state in this example is given a name. In this case we are using a type for
the states that is an enumerated state type. We will see what this means to the
code later. For now, it provides a easy way to understand and to talk about what
and how the state machine works.

Each possible transition between states is shown via an arc with the condition
for the transition to occur shown. The condition need not be in VHDL syntax
but should be understandable to the reader. Typically (highly recommended)
logic expressions are given with active high assertion assumed.

It should be understood that all transitions occur on the clock edge.

Outputs from the state machine should be listed. The only outputs from this
state machine are its present state. Most likely, some other state machine|is
watching this one’s state to determine its next state.

State Machines in VHDL 2

State Machines (cont.)

To use the enumerated state types in our example, we need to declare what they
are. This would be done in the declarative area of the architecture as shown.

ARCHITECTURE beh OF ctrl_blk_50m IS
--declare signals and enumerated types for state machines

--further down we see.......

TYPE header_type_type IS (waiting, temp_pkt);
SIGNAL header_type ps, header_type ns: header_type_type;

--bla, bla, bla.....

BEGIN

The TYPE declaration states that we have a type cdfledder type typand
that the two only states for this type araiting andtemp_pktHaving done
this we can declare two signals for our present state and next state vectors
calledheader_type pandheader_type nd\ote that the vectors get their
names from the state machine they are apart of plugd®m nsto
distinguish present or next state vectors.

This style of state machine state coding is called enumerated state encoding. It
Is flexible in the sense that the synthesis tool is left to make the decision about
how to assign a bit pattern to each state. More about this later.

Now using these state declarations, lets make the process that creates the stat
machine.

State Machines in VHDL 3

State Machine Process Body

Below we see the body of the process that creates the state machine.

header_type_sm:
PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type ps, header_type_ns)
BEGIN
--clocked part
IF (reset_n ="0") THEN
header_type_ps <= waiting;
ELSIF (clk_50'EVENT AND clk_50 ="1") THEN
header_type ps <= header_type_ns;
END IF;

--combinatorial part
CASE header_type_ps IS
WHEN waiting =>
IF (byte_assembled ='1") AND (byte_cnt_ps = header) AND
(@5_or_c3 ="1") THEN

header_type _ns <=temp_pkt;
ELSE
header_type ns <= waiting;
END IF;
WHEN temp_pkt =>
IF (byte_assembled = '1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting;
ELSE
header_type ns <=temp_pkt;
END IF;
END CASE;
END PROCESS header_type_sm;

First we see that the process label is consistent with the documentation and the
signhal names we have assigned. Also all the signals that may be read are ljsted
In the process sensitivity list for the process.
header_type_sm:

PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type_ps, header_type_ns)

Next the flip flops are created to hold the present state. This is what is
commonly called the clocked or synchronous part since it is controlled by the
clock.

State Machines in VHDL 4

State Machine Process Body (synchronous part)

--clocked part

IF (reset_ n='0") THEN
header_type ps <= waiting;

ELSIF (clk_50EVENT AND clk_50 ="1") THEN
header_type ps <= header_type_ns;

END IF;

Here we see an active low asynchronous reset that forces the present state to
become the state calladiting. It does so without regard to the clock. That is
why it is called an asynchronous reset.

U)

Following the reset clause, the “clock tick event” clause identifies the
following statements to be generating flip flops. The flip flops it creates are
rising edge sensitive and cause the sigealder_type pt take on the value
of header_type nat the rising clock edge.

This concludes the clocked part of the process. We have created the necessary
state flip flops and connected the D inputs to header_type ns and the Q outputs
to header_type ps.

Now we will create the next state steering logic. It consists only of gates, ile.;
combinatorial logic. This part of the process is thus commonly called the
combinatorial part of the process.

State Machines in VHDL 5

State Machine Process Body (combinatorial part)

--combinatorial part
CASE header_type_ps IS
WHEN waiting =>
IF (byte_assembled ="1") AND (byte_cnt_ps = header) AND
(@5_or_c3="1") THEN
header_type ns <=temp_pkt;
ELSE
header_type ns <= waiting;
END IF;
WHEN temp_pkt =>
IF (byte_assembled ='1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting;
ELSE
header_type_ns <=temp_pkt;
END IF;
END CASE;

To clearly make the next state logic, a structure is created whestatements
are tucked under each distilf@ASE state possibility. EacBASE possibility
IS a state in the state machine. Given a present stdté ftatements
determine from the input conditions what the next state is to be.

To further illustrate this:

The CASE statement enumerates each possible present state:

CASE header_type _ps IS
WHEN waiting =>
--bla, bla, bla
WHEN temp_pkt =>
--bla, bla, bla

END CASE

In any given state the IF determines the input conditions to steer the machine to
the next state. For example:

WHEN temp_pkt =>
IF (byte_assembled ='1") AND (byte_cnt_ps = byte4) THEN
header_type ns <= waiting; --go to waiting if IF is true
ELSE
header_type ns <=temp_pkt; --else, stay put
END IF;

State Machines in VHDL 6

State Machine Synthesis

If we synthesize the state machine we see in the transcript:

"Infs/quille/ul/t/traylor/ece574/src/header.vhd”,line 28: Info,
Enumerated type header_type_type with 2 elements encoded as binary.

Encodings for header_type_type values
value header_type_type[O]

waiting 0
temp_pkt 1

This tells us that the synthesis tool selected the value of ‘O’ to represent the
statewaiting, and the value ‘1’ to represent the stat@p pktThis makes
since because we have only two states, thus 0 and 1 can represent them. We
would furthermore expect only one flip flop to be needed. So the schematic
looks like this: (clock and reset wiring omitted)

but e_cht _p=do)

but a_cht _pzd1)= bemder_t ppe_ps

i 3
E1 1k L
MOT (bt e_asserbled) {:}_ _{}
[LH
ab_or_c® [o
NOT bt ea_cnt _psl2h) [A hemdar_tppe_ns
i five
but e_cnt _pednd = Moo
= fiva

but e_cnt _psd 1) [

You might say, “That’s not the way | would do it.” But for the circuit this state
machine was taken from, this was what it considered an optimal realization.
Study the tas design filgtrl_50m.vhdand you can probably figure out some of
the how and why the circuit was built this way.

)

The next state steering logic can be clearly seen to the left of the state storage
(flip flop).

State Machines in VHDL 7

Enumerated Encoding

Using enumerated state encoding allows the synthesis tool to determine the
optimal encoding for the state machine. If speed is the primary concern, a state
machine could be created using one hot encoding. If minimum gate count is the
most important criterion, a binary encoding might be best. For minimum noise
or to minimize decoding glitching in outputs, grey coding might be best. Four
different ways to encode a 2 bit state machine might be like this:

binary 00, 01, 10, 11
one hot 0001, 0010, 0100, 1000
grey 00, 01, 11, 10
random 01, 00, 11,10

While enumerated encoding is the most flexible and readable, there are cases
where we want to create output signals that have no possibility of output
glitches. Asynchronous FIFOs and DRAMSs in patrticular.

As an example of a glitching state machine, lets build a two bit counter that has
an output which is asserted in states “01” or “10” and is deasserted for states
“00” and “11”. We will allow binary encoding of the counter.

State Machines in VHDL 8

Counter State Machine with Decoded Output

The code looks like this:

ARCHITECTURE beh OF sm1 IS
TYPE byte_cnt_type IS (cntl, cnt2, cnt3, cnt4);
SIGNAL byte cnt_ps, byte_cnt_ns:byte cnt_type;
BEGIN
byte cntr:
PROCESS (clk_50, reset_n, enable, byte _cnt_ps, byte_cnt_ns)
BEGIN
--clocked part
IF (reset_n ="0") THEN
byte_cnt_ps <= cntl;
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
byte _cnt_ps <= byte_cnt_ns;
END IF;
--combinatorial part
decode_out <='0’; --output signal
CASE byte cnt_ps IS
WHEN cntl => --output signal takes default value
IF (enable ='1") THEN
byte_cnt_ns <= cnt2,;

ELSE

byte _cnt_ns <= cntl,
END IF;
WHEN cnt2 =>

decode_out <="1’; --output signal assigned
IF (enable ='1") THEN
byte_cnt_ns <= cnt3;

ELSE

byte cnt_ns <= cnt2;
END IF;
WHEN cnt3 =>

decode_out <="1’; --output signal assigned
IF (enable ='1") THEN
byte _cnt_ns <= cnt4;
ELSE
byte cnt_ns <= cnt3;
END IF;
WHEN cnt4 => --output signal takes default value
IF (enable ='1") THEN
byte _cnt_ns <= cntl,
ELSE
byte cnt_ns <= cnt4;
END IF;
END CASE;
END PROCESS byte_cntr;

State Machines in VHDL

Specifying Outputs with Enumerated States

In the proceeding code, we see one way an output other than the present state
may be created. At the beginning of the combinatorial part, before the CASE
statement, the default assignmentdecode_ouis given.

--combinatorial part
decode_out <="0"; --output signal
CASE byte _cnt_ps IS

In this example, the default value for the outppetode outs logic zero. The
synthesis tool sees thadcode_outs to be logic zero unless it is redefined to
be logic one. In state cntl, no value is assigned to decode_out,.

WHEN cntl => --output signal takes default value
IF (enable ='1") THEN
byte_cnt_ns <= cnt2,;
ELSE
byte_cnt_ns <= cntl,
END IF;

| =4

Thus if the present state is cntl, decode_out remains zero. However, if the
present state is cnt2, the value of decode_out is redefined to be logic one.

WHEN cnt2 =>
decode_out <="1"; --output signal assigned
IF (enable ='1") THEN

byte_cnt_ns <= cnt3;

ELSE

byte_cnt_ns <= cnt2;
END IF;
WHEN cnt3 =>

We could have omitted the default assignment before&hEE statement and
specified the value afecode ouin each state. But for state machines with
many outputs, this becomes cumbersome and more difficult to see what is
going on.

State Machines in VHDL 10

Specifying Outputs with Enumerated States

What happens if we have a state machine with an output, yet do not specify the

outputs value in each state. This is similar to the situation of IF without ELSE.
Latches are created on the output signal.

If we specify a “off” or default value for each output signal prior to the case
statement we will never have the possibility for a latch

State Machines in VHDL 11

State Machine with Decoded Outputs

Note the declaration of the enumerated states:
TYPE byte_cnt_type IS (cntl, cnt2, cnt3, cnt4);
SIGNAL byte _cnt_ps, byte_cnt_ns:byte cnt_type;

Typically, (i.e., may change with tool and/or vendor) with binary encoding, the
state assignments will occur following a binary counting sequence in the order
in which the states are named. i.e., cntl =“00”, cnt2 =“01", etc. Surely enough
when the synthesis is done, we see the transcript say:

-- Loading entity sm1 into library work
"Infs/guille/ul/t/traylor/ece574/src/sm1l.vhd" line 23: Info,
Enumerated type byte cnt_type with 4 elements encoded as binary.
Encodings for byte_cnt_type values

value byte cnt_type[1-0]

cntl 00
cnt2 01
cnt3 10
cnt4 11

The circuit we get is shown below:

2=
rezet_n[_= —E:,}: - |

3
4 2 k4 -) - decad t
- ecaode_ou
¥ 0 4
enah |l e A -é}
clk 50 = — T :
E O
%u E—

Note the output decoding created by the XOR and NOT gate. If there are
unequal delays from the flip flop outputs to the XOR gate, glitches will result
at the XOR output. In a “delayless” simulation this would not be seen. In a
fabricated chip however, the glitches are almost a certainty.

State Machines in VHDL 12

Glitches

If we simulate this circuit without delays, we see the following. Note that the
signaldecode_ouhas no glitches.

wave — default

ile Edit Cursor Zoom Format Window

S

fsmlfnot_reset_n
fsmlibyte_cnt_ps_(j0
fsmlin=95 1
b

- o - < -1

When we are first creating a circuit, we usually simulate without delays.
However, when we synthesize, we can specify that a “sdf” file be created. The
sdf (standard delay format) file contains the delay information for the
synthesized circuit.

Once the synthesized circuit is created, we can invoke the vsim simulator with
the sdf switch used to apply the delays to the circuit. More about this process in
the latter part of the class.

So, when we invoke vsim like this:
vsim -sdfmax ./sdfout/sm1.sdf sml

delays are added to the circuit. To make the glitch clearer, | added an additional
1ns delay to one of the flip flops by editing the sdf file. The simulation output
now looks like this:

State Machines in VHDL 13

State machine output with glitches

wave — default

ile Edit Cursor Zoom Format Window

fsmildclk_al
fsmildreset_n
fsml, 'l-'rl -|h|l-'
fEmiit

fsmly rlll’[res I-'t f
mlshyte_cnt_ps_

femlin=9a 1

I 11 | E Y T N O N | | E N T T N O Y | | F T T Y T O I | 111
100 200
9 ns

So using enumerated types when coding state machines is a clear and flexible
coding practice. However,......... the synthesizer gayyour lunch in certain
situations! As folks often say, “It depends.”. If you state machine outputs go to
another state machine as inputs, the glitches won’t make a bit of difference.
The glitches will come only after the clock edge and will be ignored by the flip
flop. But, if the outputs go to edge sensitive devices, BEWARE.

(D

So, lets see how we can make outputs that are always clean, without glitches
for those special cases.

grey coding, choosing states wisely, following flip flops, explicit states

State Machines in VHDL 14

State Encoding for Glitchless Outputs

One solution to creating glitchless outputs is to strategically select the state
encoding such that glitches cannot occur. This comes down to selecting states
such that as the state machine goes through its sequence, the encoded states at
adjacent. You can think of this as the situation in a Karnough map where two
cells are directly next to each other. One of the easiest way of doing this is by
using Grey coding.

If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch

would be created between states “01” and “11” as these two states are adjacent.
Most synthesis tools will do grey encoding for state machines simply by
setting a switch in the synthesis script.

Using grey coding in a counter makes an easy way to prevent output decader
glitches. However, in a more general state machine where many sequences
may be possible and arcs extend from most states to other states, it becomes
very difficult to make sure you have correctly encoded all the states to avoid a
glitch in every sequence. In this situation, we can employ a more “bombproof”
methodology.

State Machines in VHDL 15

Glitchless Output State Machine Methodology

The key to making glitchless outputs from our state machines is to make sure
that all outputs come directly from a flip flop output. In the previous example
we could accomplish this by adding an additional flip flop to the circuit.

present_state “cleanup” flip-flop

L output
L next state P Q output—p-pD Q2P

signals
.)
decode logi¢ decodg

INPULS i

e [

relset reset

The “cleanup” flip flop effectively removes the glitches created by the output
decoder logic by “re-registering” the glitchy output signal. This is an effective
solution but it delays the output signal by one clock cycle. It would be better|to
place the flip flop so that somehow the next state logic could create the output
signal one cycle early. This is analogous to placing the output decode inside the
next state decoder and adding one state bit.

The final solution alluded to above is to add one state bit that does not
represent the present state but is representative only of the output signal. For
the counter example we would encode the state bits like this: “000”, “101”,
“1107, “011”. Thus the present state is actually broken into two parts, one

representing the state (two LSB’s) and the other part representing the output
signal (the MSB). This will guarantee that the output signal must come from a
flip flop. An another advantage is that the output signal becomes available| in
the same cycle as the state becomes active and with no decoder delay

Lets see how we can code this style of state machine so that the synthesis tool
gives us what we want

State Machines in VHDL 16

Coding the Glitchless State Machine

Using our two-bit counter as an example here is how we could force an
encoding that would allocate one flip flop output as our glitchless output.

First of all we decide up on our encoding.

present state vector consists of

“output state” bif “present state” bits

0[00

determines the valu 0 keeps track of what
of decode_out 10 state the counter is in in

011

The present state vector we will declare as STD_LOGIC_VECTOR actually
consists of a one bit vector that represents the valude¢batle oushould
have in the state we are in, plus two bits representing the present count state

Now, to create the present and next state vectors and assign their values as we
have just stated, we do the following in the declaration area of our architecture.

--declare the vectors
SIGNAL byte cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte cnt_ps : STD_LOGIC_VECTOR(2 DOWNTO 0);

--state encodings

CONSTANT cntl : STD_LOGIC_VECTOR(4 DOWNTO 0) :

CONSTANT cnt2 : STD_LOGIC_VECTOR(4 DOWNTO 0) :
)
)

W
OI—\I—‘O

CONSTANT cnt3 : STD_LOGIC_VECTOR(4 DOWNTO 0
CONSTANT cnt4 : STD_LOGIC_VECTOR(4 DOWNTO 0

The use of CONSTANT here allows us to use the names instead of bit vectors
like our enumerated example and not be guessing what state “110” is. This
becomes far more important in more complex state machines.

State Machines in VHDL 17

Coding the Glitchless State Machine

The rest of our state machine is coded identically to the enumerated example
given previously with two exceptions.

Remember that the output signal is now really a part of the véxgtier cnt_ps
How do we associate this bit of the bit vector with the output signal? We
simply rip the bus. For this example:

decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

This piece of code can be placed in a concurrent area preferably adjacent to the
process containing this state machine.

Also, since we are not covering every possibility in GASE statement with
our fourCONSTANT definitions, we must take care of this. To do so we
utilize theOTHERS statement as follows:

WHEN OTHERS =>

byte_cnt_ns <= (OTHERS =>"'-");
END CASE; (OTHERS =>"-)

This code segment implies when no other case matches, the next state vector
may be assigned to any value. As we do not expect (outside of catastrophic
circuit failure) any other state to be entered, this is of no concern. By allowing

assignment of the next state vector to any value the synthesis tool can use the
assigned “don’t cares” to minimize the logic.

The mysterious portion of the aboyeTHERS => ")

Really just says that for every how many bits are in the vector (all the others)
assign a don't care value. Its a handy trick that allows you to modify your code
later and add or subtract bits in a vector but never have to chan@ItHERS
case in YouCASE statement.

Lets look at the new and improved state machine code and the synthesized
output.

State Machines in VHDL 18

Code for the Glitchless Output State Machine

ARCHITECTURE beh OF sm1 IS

--declare the vectors and state encodings

SIGNAL byte_cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte_cnt_ps : STD_LOGIC_VECTOR(2 DOWNTO 0);

CONSTANT cntl : STD_LOGIC_VECTOR(2 DOWNTO 0) := "000";
CONSTANT cnt2 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="101";
CONSTANT cnt3 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="110";
CONSTANT cnt4 : STD_LOGIC_VECTOR(2 DOWNTO 0) :="011";
BEGIN

byte cntr:

PROCESS (clk_50, reset_n, enable, byte_cnt_ps, byte_cnt_ns)
BEGIN

--clocked part
IF (reset_n ="0") THEN
byte cnt_ps <= cntl;
ELSIF (clk_50'EVENT AND clk_50 ='1") THEN
byte cnt_ps <= byte_cnt_ns;
END IF;
--combinatorial part
CASE byte_cnt_ps IS
WHEN cntl =>
IF (enable ='1") THEN
byte cnt_ns <= cnt2;

ELSE

byte cnt_ns <= cntl;
END IF ;
WHEN cnt2 =>

IF (enable ='1") THEN
byte cnt_ns <= cnt3;

ELSE
byte cnt_ns <= cnt2;
END IF ;
WHEN cnt3 =>

IF (enable ='1") THEN
byte cnt_ns <= cnt4;

ELSE
byte cnt_ns <= cnt3;
END IF ;
WHEN cnt4 =>

IF (enable ='1") THEN
byte cnt_ns <= cntl;
ELSE
byte cnt_ns <= cnt4;
END IF ;
WHEN OTHERS =>
byte cnt_ns <= (OTHERS =>"-");
END CASE;
END PROCESS byte_cntr;
decode_out <= byte_cnt_ps(2); --output signal assignment

State Machines in VHDL

19

Synthesized Glitchless Output State Machine

Here is the synthesized output for our glitchless output state machine:

i dacods_out.
I:E_

clk 50 =

ragat _n[—E:,)%

Whoa, you say. That’s not what | expected. Here is a case where the syntl
tool did what you “meant” but not what “you said”. We sure enough got an
output from a flip flop that is glitchless but the circuit still only has two flip

flops. What the synthesis tool did what to rearrange the state encoding such

that the bit thatlecode_ouis tied to is one in states cnt2 and cnt3. In other
words, it Grey coded the states to avoid the extra flip flop.

Other tools may or may not behave in the same way. Once again, it pays t

checkout the transcript, take a look at the gates used and take a peek at the

schematic. The synthesis transcript did mention what was done in a vague
of way:
-- Compiling root entity sm1(beh)

"Infs/guille/ul/t/traylor/ece574/src/sml.vhd", line 27:
Info, D-Flipflop reg_byte_cnt_ps(0) is unused, optimizing...

The moral of the story... read the transcripts. Don't trust any tool complete
Double check everything. “The paranoid survive.”...... Andy Grove

nesis

o)

sort

y.

State Machines in VHDL 20

State Machines in VHDL - General Form

As seen in the previous example, most state machines in VHDL
assume the following form:

process_name:
PROCESS(sensitivity_list)
BEGIN
--synchronous portion
IF (reset = ‘1) THEN
present_state <= reset_conditon;
ELSIF (clkEVENT AND clk = ‘1") THEN
present_state <= next_state;
END IF;
--combinatorial part
CASE present_state IS
WHEN statel =>
next_state <= state_value;
other_statements;
WHEN state2 =>
next_state <= state_value;

other _statements;
*

*

WHEN OTHERS => next_state <= reset_state;
END CASE;
END PROCESS;

State Machines in VHDL

21

	State Machines in VHDL
	Implementing state machines in VHDL is fun and easy provided you stick to some fairly well establ...
	The format for coding state machines follows the general structure for a state machine. Lets look...
	The Moore state machine consists of two basic blocks, next state decode (or steering) logic, and ...
	For a first example we will look at the state machine in TAS which holds the state of what type o...

	State Diagram for header_type_sm
	All your state machines should be documented in roughly this fashion. The name of the process hol...
	Every state machine has an arc from “reset”. This indicates what state the state machine goes to ...
	Each state in this example is given a name. In this case we are using a type for the states that ...
	Each possible transition between states is shown via an arc with the condition for the transition...
	It should be understood that all transitions occur on the clock edge.
	Outputs from the state machine should be listed. The only outputs from this state machine are its...

	State Machines (cont.)
	To use the enumerated state types in our example, we need to declare what they are. This would be...
	ARCHITECTURE beh OF ctrl_blk_50m IS --declare signals and enumerated types for state machines --f...

	The TYPE declaration states that we have a type called header_type_type and that the two only sta...
	This style of state machine state coding is called enumerated state encoding. It is flexible in t...
	Now using these state declarations, lets make the process that creates the state machine.

	State Machine Process Body
	Below we see the body of the process that creates the state machine.
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	header_type_ns <= temp_pkt; ELSE header_type_ns <= waiting; END IF ; WHEN temp_pkt => IF (byte_as...
	First we see that the process label is consistent with the documentation and the signal names we ...
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	Next the flip flops are created to hold the present state. This is what is commonly called the cl...

	State Machine Process Body (synchronous part)
	--clocked part IF (reset_n = ’0’) THEN header_type_ps <= waiting; ELSIF (clk_50’EVENT AND clk_50 ...
	Here we see an active low asynchronous reset that forces the present state to become the state ca...
	Following the reset clause, the “clock tick event” clause identifies the following statements to ...
	This concludes the clocked part of the process. We have created the necessary state flip flops an...
	Now we will create the next state steering logic. It consists only of gates, i.e.; combinatorial ...

	State Machine Process Body (combinatorial part)
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	To clearly make the next state logic, a structure is created where IF statements are tucked under...
	To further illustrate this:
	The CASE statement enumerates each possible present state:
	CASE header_type_ps IS WHEN waiting => --bla, bla, bla WHEN temp_pkt => --bla, bla, bla END CASE
	In any given state the IF determines the input conditions to steer the machine to the next state....
	WHEN temp_pkt => IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN header_type_ns <= waiti...

	State Machine Synthesis
	If we synthesize the state machine we see in the transcript:
	"/nfs/guille/u1/t/traylor/ece574/src/header.vhd",line 28: Info, Enumerated type header_type_type ...
	Encodings for header_type_type values value header_type_type[0] =============================== w...

	This tells us that the synthesis tool selected the value of ‘0’ to represent the state waiting, a...
	You might say, “That’s not the way I would do it.” But for the circuit this state machine was tak...
	The next state steering logic can be clearly seen to the left of the state storage (flip flop).

	Enumerated Encoding
	Using enumerated state encoding allows the synthesis tool to determine the optimal encoding for t...
	While enumerated encoding is the most flexible and readable, there are cases where we want to cre...
	As an example of a glitching state machine, lets build a two bit counter that has an output which...

	Counter State Machine with Decoded Output
	The code looks like this:
	ARCHITECTURE beh OF sm1 IS TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SIGNAL byte_cnt_ps, by...

	Specifying Outputs with Enumerated States
	In the proceeding code, we see one way an output other than the present state may be created. At ...
	--combinatorial part decode_out <= ’0’; --output signal CASE byte_cnt_ps IS
	In this example, the default value for the output decode_out is logic zero. The synthesis tool se...
	WHEN cnt1 => --output signal takes default value IF (enable = ’1’) THEN byte_cnt_ns <= cnt2; ELSE...
	Thus if the present state is cnt1, decode_out remains zero. However, if the present state is cnt2...
	WHEN cnt2 => decode_out <= ’1’; --output signal assigned IF (enable = ’1’) THEN byte_cnt_ns <= cn...
	We could have omitted the default assignment before the CASE statement and specified the value of...

	Specifying Outputs with Enumerated States
	What happens if we have a state machine with an output, yet do not specify the outputs value in e...
	If we specify a “off” or default value for each output signal prior to the case statement we will...

	State Machine with Decoded Outputs
	Note the declaration of the enumerated states: TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SI...
	Typically, (i.e., may change with tool and/or vendor) with binary encoding, the state assignments...
	-- Loading entity sm1 into library work "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd",line 23: In...

	The circuit we get is shown below:
	Note the output decoding created by the XOR and NOT gate. If there are unequal delays from the fl...

	Glitches
	If we simulate this circuit without delays, we see the following. Note that the signal decode_out...
	When we are first creating a circuit, we usually simulate without delays. However, when we synthe...
	Once the synthesized circuit is created, we can invoke the vsim simulator with the sdf switch use...
	So, when we invoke vsim like this:
	vsim -sdfmax ./sdfout/sm1.sdf sm1

	delays are added to the circuit. To make the glitch clearer, I added an additional 1ns delay to o...

	State machine output with glitches
	So using enumerated types when coding state machines is a clear and flexible coding practice. How...
	So, lets see how we can make outputs that are always clean, without glitches for those special ca...
	grey coding, choosing states wisely, following flip flops, explicit states

	State Encoding for Glitchless Outputs
	One solution to creating glitchless outputs is to strategically select the state encoding such th...
	If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch would be created betwee...
	Using grey coding in a counter makes an easy way to prevent output decoder glitches. However, in ...

	Glitchless Output State Machine Methodology
	The key to making glitchless outputs from our state machines is to make sure that all outputs com...
	The “cleanup” flip flop effectively removes the glitches created by the output decoder logic by “...
	The final solution alluded to above is to add one state bit that does not represent the present s...
	Lets see how we can code this style of state machine so that the synthesis tool gives us what we ...

	Coding the Glitchless State Machine
	Using our two-bit counter as an example here is how we could force an encoding that would allocat...
	First of all we decide up on our encoding.
	The present state vector we will declare as STD_LOGIC_VECTOR actually consists of a one bit vecto...
	Now, to create the present and next state vectors and assign their values as we have just stated,...
	--declare the vectors SIGNAL byte_cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0); SIGNAL byte_cnt_ps : STD...
	--state encodings CONSTANT cnt1 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "000"; CONSTANT cnt2 : STD_LOGI...

	The use of CONSTANT here allows us to use the names instead of bit vectors like our enumerated ex...

	Coding the Glitchless State Machine
	The rest of our state machine is coded identically to the enumerated example given previously wit...
	Remember that the output signal is now really a part of the vector byte_cnt_ps. How do we associa...
	decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

	This piece of code can be placed in a concurrent area preferably adjacent to the process containi...
	Also, since we are not covering every possibility in our CASE statement with our four CONSTANT de...
	WHEN OTHERS => byte_cnt_ns <= (OTHERS => ’-’); END CASE; (OTHERS => ’-’)

	This code segment implies when no other case matches, the next state vector may be assigned to an...
	The mysterious portion of the above: (OTHERS => ’-’)
	Really just says that for every how many bits are in the vector (all the others) assign a don’t c...
	Lets look at the new and improved state machine code and the synthesized output.

	Code for the Glitchless Output State Machine
	ARCHITECTURE beh OF sm1 IS --declare the vectors and state encodings SIGNAL byte_cnt_ns : STD_LOG...

	Synthesized Glitchless Output State Machine
	Here is the synthesized output for our glitchless output state machine:
	Whoa, you say. That’s not what I expected. Here is a case where the synthesis tool did what you “...
	Other tools may or may not behave in the same way. Once again, it pays to checkout the transcript...
	-- Compiling root entity sm1(beh) "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd", line 27: Info, D...

	The moral of the story... read the transcripts. Don’t trust any tool completely. Double check eve...

	State Machines in VHDL - General Form
	As seen in the previous example, most state machines in VHDL assume the following form:
	process_name: PROCESS(sensitivity_list) BEGIN --synchronous portion IF (reset = ‘1’) THEN present...

