
St

 to
iven
ble,

tate

 (or
e flip
sent
f the
ts of

he
State Machines in VHDL

Implementing state machines in VHDL is fun and easy provided you stick
some fairly well established forms. These styles for state machine coding g
here is not intended to be especially clever. They are intended to be porta
easily understandable, clean, and give consistent results with almost any
synthesis tool.

The format for coding state machines follows the general structure for a s
machine. Lets look at the basic Moore machine structure.

The Moore state machine consists of two basic blocks, next state decode
steering) logic, and some state storage usually (always for our case) D-typ
flops. Inputs are applied to the next state decode block along with the pre
state to create the next state output. The flip flops simply hold the value o
present state. In the example above, the only output signals are the outpu
the state flip flops. Alternatively, the flip flop outputs could be decoded to
create the output signals.

For a first example we will look at the state machine in TAS which holds t
state of what type of header is being received,waiting or temp_pkt. First we
look at the state diagram.

next state
decode logic

D Q

present_state

R

output signals

inputs

next_state

clock
reset
ate Machines in VHDL 1



St

e
f the

state
ut

e for
to the
what

ition
tax
ed)

is
 is
State Diagram for header_type_sm

All your state machines should be documented in roughly this fashion. Th
name of the process holding the code for the state machine is the name o
state machine. In this case it isheader_type_sm.

Every state machine has an arc from “reset”. This indicates what state the
machine goes to when a reset is applied. The diagram is worthless witho
knowing what the initial state is.

Each state in this example is given a name. In this case we are using a typ
the states that is an enumerated state type. We will see what this means 
code later. For now, it provides a easy way to understand and to talk about
and how the state machine works.

Each possible transition between states is shown via an arc with the cond
for the transition to occur shown. The condition need not be in VHDL syn
but should be understandable to the reader. Typically (highly recommend
logic expressions are given with active high assertion assumed.

It should be understood that all transitions occur on the clock edge.

Outputs from the state machine should be listed. The only outputs from th
state machine are its present state. Most likely, some other state machine
watching this one’s state to determine its next state.

waiting temp_pkt

reset

byte_assembled*
byte_cnt_ps = header*

a5_or_c3

byte_assembled*
byte_cnt_ps = byte4

header_type_sm
outputs: state only
ate Machines in VHDL 2



St

t they
wn.

rs

ing. It
bout

e state
State Machines (cont.)

To use the enumerated state types in our example, we need to declare wha
are. This would be done in the declarative area of the architecture as sho

ARCHITECTURE beh OF ctrl_blk_50m IS
--declare signals and enumerated types for state machines

--further down we see.......

TYPE header_type_type IS (waiting, temp_pkt);
SIGNAL header_type_ps, header_type_ns: header_type_type;

--bla, bla, bla.....

BEGIN

TheTYPE declaration states that we have a type calledheader_type_typeand
that the two only states for this type arewaiting andtemp_pkt. Having done
this we can declare two signals for our present state and next state vecto
calledheader_type_ps andheader_type_ns. Note that the vectors get their
names from the state machine they are apart of plus the_ps or _ns to
distinguish present or next state vectors.

This style of state machine state coding is called enumerated state encod
is flexible in the sense that the synthesis tool is left to make the decision a
how to assign a bit pattern to each state. More about this later.

Now using these state declarations, lets make the process that creates th
machine.
ate Machines in VHDL 3



St

d the
listed

 the
State Machine Process Body

Below we see the body of the process that creates the state machine.

header_type_sm:
 PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type_ps, header_type_ns)
 BEGIN
   --clocked part
   IF (reset_n = ’0’) THEN
     header_type_ps <= waiting;
   ELSIF (clk_50’EVENT AND clk_50 = ’1’) THEN
     header_type_ps <= header_type_ns;
   END IF;

   --combinatorial part
   CASE header_type_ps IS
     WHEN waiting =>
      IF (byte_assembled = ’1’) AND (byte_cnt_ps = header) AND
(a5_or_c3 = ’1’) THEN

        header_type_ns <= temp_pkt;
      ELSE
        header_type_ns <= waiting;
      END IF ;
     WHEN temp_pkt =>
      IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN
        header_type_ns <= waiting;
      ELSE
        header_type_ns <= temp_pkt;
      END IF ;
   END CASE;
 END PROCESS header_type_sm;

First we see that the process label is consistent with the documentation an
signal names we have assigned. Also all the signals that may be read are
in the process sensitivity list for the process.

header_type_sm:
 PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps,
header_type_ps, header_type_ns)

Next the flip flops are created to hold the present state. This is what is
commonly called the clocked or synchronous part since it is controlled by
clock.
ate Machines in VHDL 4



St

te to
is

e

essary
tputs

i.e.;
State Machine Process Body (synchronous part)

   --clocked part
   IF (reset_n = ’0’) THEN
     header_type_ps <= waiting;
   ELSIF (clk_50’EVENT AND clk_50 = ’1’) THEN
     header_type_ps <= header_type_ns;
   END IF;

Here we see an active low asynchronous reset that forces the present sta
become the state calledwaiting. It does so without regard to the clock. That 
why it is called an asynchronous reset.

Following the reset clause, the “clock tick event” clause identifies the
following statements to be generating flip flops. The flip flops it creates ar
rising edge sensitive and cause the signalheader_type_ps to take on the value
of header_type_ns at the rising clock edge.

This concludes the clocked part of the process. We have created the nec
state flip flops and connected the D inputs to header_type_ns and the Q ou
to header_type_ps.

Now we will create the next state steering logic. It consists only of gates, 
combinatorial logic. This part of the process is thus commonly called the
combinatorial part of the process.
ate Machines in VHDL 5



St

ne to
State Machine Process Body (combinatorial part)

 --combinatorial part
   CASE header_type_ps IS
     WHEN waiting =>
      IF (byte_assembled = ’1’) AND (byte_cnt_ps = header) AND
         (a5_or_c3 = ’1’) THEN
        header_type_ns <= temp_pkt;
      ELSE
        header_type_ns <= waiting;
      END IF ;
     WHEN temp_pkt =>
      IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN
        header_type_ns <= waiting;
      ELSE
        header_type_ns <= temp_pkt;
      END IF ;
   END CASE;

To clearly make the next state logic, a structure is created whereIF statements
are tucked under each distinctCASE state possibility. EachCASE possibility
is a state in the state machine. Given a present state theIF  statements
determine from the input conditions what the next state is to be.

To further illustrate this:

TheCASE statement enumerates each possible present state:

CASE header_type_ps  IS
     WHEN waiting =>
     --bla, bla, bla
     WHEN temp_pkt =>
     --bla, bla, bla
END CASE

In any given state the IF determines the input conditions to steer the machi
the next state. For example:

WHEN temp_pkt =>
   IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN
       header_type_ns <= waiting;  --go to waiting if IF is true
   ELSE
       header_type_ns <= temp_pkt; --else, stay put
  END IF ;
ate Machines in VHDL 6



St

he

. We
tic

te
n.
f

rage
State Machine Synthesis

If we synthesize the state machine we see in the transcript:

"/nfs/guille/u1/t/traylor/ece574/src/header.vhd",line 28: Info,
Enumerated type header_type_type with 2 elements encoded as binary.

Encodings for header_type_type values
   value    header_type_type[0]
===============================
   waiting          0
   temp_pkt         1

This tells us that the synthesis tool selected the value of ‘0’ to represent t
statewaiting, and the value ‘1’ to represent the statetemp_pkt. This makes
since because we have only two states, thus 0 and 1 can represent them
would furthermore expect only one flip flop to be needed. So the schema
looks like this: (clock and reset wiring omitted)

You might say, “That’s not the way I would do it.” But for the circuit this sta
machine was taken from, this was what it considered an optimal realizatio
Study the tas design filectrl_50m.vhdand you can probably figure out some o
the how and why the circuit was built this way.

The next state steering logic can be clearly seen to the left of the state sto
(flip flop).
ate Machines in VHDL 7



St

the
state
s the
ise
our

ases

has
ates
Enumerated Encoding

Using enumerated state encoding allows the synthesis tool to determine 
optimal encoding for the state machine. If speed is the primary concern, a
machine could be created using one hot encoding. If minimum gate count i
most important criterion, a binary encoding might be best. For minimum no
or to minimize decoding glitching in outputs, grey coding might be best. F
different ways to encode a 2 bit state machine might be like this:

binary 00, 01, 10, 11
one hot 0001, 0010, 0100, 1000
grey 00, 01, 11, 10
random 01, 00, 11,10

While enumerated encoding is the most flexible and readable, there are c
where we want to create output signals that have no possibility of output
glitches. Asynchronous FIFOs and DRAMs in particular.

As an example of a glitching state machine, lets build a two bit counter that
an output which is asserted in states “01” or “10” and is deasserted for st
“00” and “11”. We will allow binary encoding of the counter.
ate Machines in VHDL 8



St
Counter State Machine with Decoded Output

The code looks like this:

 ARCHITECTURE beh OF sm1 IS
 TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4);
 SIGNAL byte_cnt_ps, byte_cnt_ns:byte_cnt_type;
 BEGIN
 byte_cntr:
 PROCESS (clk_50, reset_n, enable, byte_cnt_ps, byte_cnt_ns)
 BEGIN
   --clocked part
   IF (reset_n = ’0’) THEN
     byte_cnt_ps <= cnt1;
   ELSIF (clk_50’EVENT AND clk_50 = ’1’) THEN
     byte_cnt_ps <= byte_cnt_ns;
   END IF;
   --combinatorial part
   decode_out <= ’0’;  --output signal
   CASE byte_cnt_ps IS
     WHEN cnt1 =>  --output signal takes default value
     IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt2;
      ELSE
        byte_cnt_ns <= cnt1;
      END IF ;
     WHEN cnt2 =>
     decode_out <= ’1’; --output signal assigned
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt3;
      ELSE
        byte_cnt_ns <= cnt2;
      END IF ;
     WHEN cnt3 =>
      decode_out <= ’1’; --output signal assigned
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt4;
      ELSE
        byte_cnt_ns <= cnt3;
      END IF ;
     WHEN cnt4 =>  --output signal takes default value
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt1;
      ELSE
        byte_cnt_ns <= cnt4;
      END IF ;
   END CASE;
 END PROCESS byte_cntr;
ate Machines in VHDL 9



St

t state
SE

e
.

s

Specifying Outputs with Enumerated States

In the proceeding code, we see one way an output other than the presen
may be created. At the beginning of the combinatorial part, before the CA
statement, the default assignment fordecode_out is given.

   --combinatorial part
   decode_out <= ’0’;  --output signal
   CASE byte_cnt_ps IS

In this example, the default value for the outputdecode_out is logic zero. The
synthesis tool sees thatdecode_out is to be logic zero unless it is redefined to
be logic one. In state cnt1, no value is assigned to decode_out.

     WHEN cnt1 =>  --output signal takes default value
     IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt2;
      ELSE
        byte_cnt_ns <= cnt1;
      END IF ;

Thus if the present state is cnt1, decode_out remains zero. However, if th
present state is cnt2, the value of decode_out is redefined to be logic one

     WHEN cnt2 =>
     decode_out <= ’1’; --output signal assigned
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt3;
      ELSE
        byte_cnt_ns <= cnt2;
      END IF ;
     WHEN cnt3 =>

We could have omitted the default assignment before theCASE statement and
specified the value ofdecode_outin each state. But for state machines with
many outputs, this becomes cumbersome and more difficult to see what i
going on.
ate Machines in VHDL 10



St

y the
E.

e

Specifying Outputs with Enumerated States

What happens if we have a state machine with an output, yet do not specif
outputs value in each state. This is similar to the situation of IF without ELS
Latches are created on the output signal.

If we specify a “off” or default value for each output signal prior to the cas
statement we will never have the possibility for a latch
ate Machines in VHDL 11



St

the
rder
ugh

ult
State Machine with Decoded Outputs

Note the declaration of the enumerated states:
TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4);
SIGNAL byte_cnt_ps, byte_cnt_ns:byte_cnt_type;

Typically, (i.e., may change with tool and/or vendor) with binary encoding,
state assignments will occur following a binary counting sequence in the o
in which the states are named. i.e., cnt1 = “00”, cnt2 = “01”, etc. Surely eno
when the synthesis is done, we see the transcript say:

-- Loading entity sm1 into library work
"/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd",line 23: Info,
Enumerated type byte_cnt_type with 4 elements encoded as binary.
Encodings for byte_cnt_type values
    value    byte_cnt_type[1-0]
===================================
     cnt1            00
     cnt2            01
     cnt3            10
     cnt4            11

The circuit we get is shown below:

Note the output decoding created by the XOR and NOT gate. If there are
unequal delays from the flip flop outputs to the XOR gate, glitches will res
at the XOR output. In a “delayless” simulation this would not be seen. In a
fabricated chip however, the glitches are almost a certainty.
ate Machines in VHDL 12



St

he

. The

with
ss in

ional
put
Glitches

If we simulate this circuit without delays, we see the following. Note that t
signaldecode_out has no glitches.

When we are first creating a circuit, we usually simulate without delays.
However, when we synthesize, we can specify that a “sdf” file be created
sdf (standard delay format) file contains the delay information for the
synthesized circuit.

Once the synthesized circuit is created, we can invoke the vsim simulator
the sdf switch used to apply the delays to the circuit. More about this proce
the latter part of the class.

So, when we invoke vsim like this:

vsim -sdfmax ./sdfout/sm1.sdf sm1

delays are added to the circuit. To make the glitch clearer, I added an addit
1ns delay to one of the flip flops by editing the sdf file. The simulation out
now looks like this:
ate Machines in VHDL 13



St

exible

o to
e.

flip

hes
State machine output with glitches

So using enumerated types when coding state machines is a clear and fl
coding practice. However,.........the synthesizer mayeat your lunch in certain
situations! As folks often say, “It depends.”. If you state machine outputs g
another state machine as inputs, the glitches won’t make a bit of differenc
The glitches will come only after the clock edge and will be ignored by the
flop. But, if the outputs go to edge sensitive devices, BEWARE.

So, lets see how we can make outputs that are always clean, without glitc
for those special cases.

grey coding, choosing states wisely, following flip flops, explicit states
ate Machines in VHDL 14



St

te
tates
tes are

two
s by

cent.

oder
es
mes
id a
of”
State Encoding for Glitchless Outputs

One solution to creating glitchless outputs is to strategically select the sta
encoding such that glitches cannot occur. This comes down to selecting s
such that as the state machine goes through its sequence, the encoded sta
adjacent. You can think of this as the situation in a Karnough map where 
cells are directly next to each other. One of the easiest way of doing this i
using Grey coding.

If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch
would be created between states “01” and “11” as these two states are adja
Most synthesis tools will do grey encoding for state machines simply by
setting a switch in the synthesis script.

Using grey coding in a counter makes an easy way to prevent output dec
glitches. However, in a more general state machine where many sequenc
may be possible and arcs extend from most states to other states, it beco
very difficult to make sure you have correctly encoded all the states to avo
glitch in every sequence. In this situation, we can employ a more “bombpro
methodology.
ate Machines in VHDL 15



St

sure
ple

ut
tive
r to
utput
e the

 For
,

tput
m a
 in

is tool
Glitchless Output State Machine Methodology

The key to making glitchless outputs from our state machines is to make 
that all outputs come directly from a flip flop output. In the previous exam
we could accomplish this by adding an additional flip flop to the circuit.

The “cleanup” flip flop effectively removes the glitches created by the outp
decoder logic by “re-registering” the glitchy output signal. This is an effec
solution but it delays the output signal by one clock cycle. It would be bette
place the flip flop so that somehow the next state logic could create the o
signal one cycle early. This is analogous to placing the output decode insid
next state decoder and adding one state bit.

The final solution alluded to above is to add one state bit that does not
represent the present state but is representative only of the output signal.
the counter example we would encode the state bits like this: “000”, “101”
“110”, “011”. Thus the present state is actually broken into two parts, one
representing the state (two LSB’s) and the other part representing the ou
signal (the MSB). This will guarantee that the output signal must come fro
flip flop. An another advantage is that the output signal becomes available
the same cycle as the state becomes active and with no decoder delay

Lets see how we can code this style of state machine so that the synthes
gives us what we want

next state
decode logic

D Q

present_state

R

inputs

clock
reset

output
decode

output
signalsD Q

R

reset

“cleanup” flip-flop
ate Machines in VHDL 16



St

lly

tate

 as we
ture.

ctors
is
Coding the Glitchless State Machine

Using our two-bit counter as an example here is how we could force an
encoding that would allocate one flip flop output as our glitchless output.

First of all we decide up on our encoding.

The present state vector we will declare as STD_LOGIC_VECTOR actua
consists of a one bit vector that represents the value thatdecode_out should
have in the state we are in, plus two bits representing the present count s

Now, to create the present and next state vectors and assign their values
have just stated, we do the following in the declaration area of our architec

--declare the vectors
SIGNAL byte_cnt_ns  :  STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte_cnt_ps  :  STD_LOGIC_VECTOR(2 DOWNTO 0);

--state encodings
CONSTANT cnt1 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "000";
CONSTANT cnt2 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "101";
CONSTANT cnt3 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "110";
CONSTANT cnt4 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "011";

The use of CONSTANT here allows us to use the names instead of bit ve
like our enumerated example and not be guessing what state “110” is. Th
becomes far more important in more complex state machines.

0  00
1  01
1  10
0  11

“output state” bit “present state” bits

determines the value
of decode_out

keeps track of what
state the counter is in in

present state vector consists of
ate Machines in VHDL 17



St

ple

to the

ector
hic

ing
e the

rs)
ode

ed
Coding the Glitchless State Machine

The rest of our state machine is coded identically to the enumerated exam
given previously with two exceptions.

Remember that the output signal is now really a part of the vectorbyte_cnt_ps.
How do we associate this bit of the bit vector with the output signal? We
simply rip the bus. For this example:

decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

This piece of code can be placed in a concurrent area preferably adjacent
process containing this state machine.

Also, since we are not covering every possibility in ourCASE statement with
our fourCONSTANT definitions, we must take care of this. To do so we
utilize theOTHERS statement as follows:

 WHEN OTHERS =>
      byte_cnt_ns <= (OTHERS => ’-’);
END CASE; (OTHERS => ’-’)

This code segment implies when no other case matches, the next state v
may be assigned to any value. As we do not expect (outside of catastrop
circuit failure) any other state to be entered, this is of no concern. By allow
assignment of the next state vector to any value the synthesis tool can us
assigned “don’t cares” to minimize the logic.

The mysterious portion of the above:(OTHERS => ’-’)

Really just says that for every how many bits are in the vector (all the othe
assign a don’t care value. Its a handy trick that allows you to modify your c
later and add or subtract bits in a vector but never have to change theOTHERS
case in yourCASE statement.

Lets look at the new and improved state machine code and the synthesiz
output.
ate Machines in VHDL 18



St
Code for the Glitchless Output State Machine

ARCHITECTURE beh OF sm1 IS
--declare the vectors and state encodings
SIGNAL byte_cnt_ns  :  STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL byte_cnt_ps  :  STD_LOGIC_VECTOR(2 DOWNTO 0);

CONSTANT cnt1 : STD_LOGIC_VECTOR(2 DOWNTO 0) := "000";
CONSTANT cnt2 : STD_LOGIC_VECTOR(2 DOWNTO 0) := "101";
CONSTANT cnt3 : STD_LOGIC_VECTOR(2 DOWNTO 0) := "110";
CONSTANT cnt4 : STD_LOGIC_VECTOR(2 DOWNTO 0) := "011";

 BEGIN
 byte_cntr:
 PROCESS (clk_50, reset_n, enable, byte_cnt_ps, byte_cnt_ns)
 BEGIN
   --clocked part
   IF (reset_n = ’0’) THEN
     byte_cnt_ps <= cnt1;
   ELSIF (clk_50’EVENT AND clk_50 = ’1’) THEN
     byte_cnt_ps <= byte_cnt_ns;
   END IF;
   --combinatorial part
     CASE byte_cnt_ps IS
     WHEN cnt1 =>
     IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt2;
      ELSE
        byte_cnt_ns <= cnt1;
      END IF ;
     WHEN cnt2 =>
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt3;
      ELSE
        byte_cnt_ns <= cnt2;
      END IF ;
     WHEN cnt3 =>
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt4;
      ELSE
        byte_cnt_ns <= cnt3;
      END IF ;
     WHEN cnt4 =>
      IF (enable = ’1’) THEN
        byte_cnt_ns <= cnt1;
      ELSE
        byte_cnt_ns <= cnt4;
      END IF ;
     WHEN OTHERS =>
        byte_cnt_ns <= (OTHERS => ’-’);
   END CASE;
 END PROCESS byte_cntr;
 decode_out <= byte_cnt_ps(2);  --output signal assignment
ate Machines in VHDL 19



St

thesis

ch

 to
the

sort

ly.
Synthesized Glitchless Output State Machine

Here is the synthesized output for our glitchless output state machine:

Whoa, you say. That’s not what I expected. Here is a case where the syn
tool did what you “meant” but not what “you said”. We sure enough got an
output from a flip flop that is glitchless but the circuit still only has two flip
flops. What the synthesis tool did what to rearrange the state encoding su
that the bit thatdecode_out is tied to is one in states cnt2 and cnt3. In other
words, it Grey coded the states to avoid the extra flip flop.

Other tools may or may not behave in the same way. Once again, it pays
checkout the transcript, take a look at the gates used and take a peek at 
schematic. The synthesis transcript did mention what was done in a vague
of way:

-- Compiling root entity sm1(beh)
"/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd", line 27:
Info, D-Flipflop reg_byte_cnt_ps(0) is unused, optimizing...

The moral of the story... read the transcripts. Don’t trust any tool complete
Double check everything. “The paranoid survive.”...... Andy Grove
ate Machines in VHDL 20



St
State Machines in VHDL - General Form

As seen in the previous example, most state machines in VHDL
assume the following form:

process_name:
PROCESS(sensitivity_list)
BEGIN
--synchronous portion
  IF (reset = ‘1’) THEN
    present_state <= reset_conditon;
  ELSIF (clk’EVENT AND clk = ‘1’) THEN
    present_state <= next_state;
  END IF;
--combinatorial part
  CASE present_state IS
     WHEN state1 =>
        next_state <= state_value;
        other_statements;
     WHEN state2 =>
        next_state <= state_value;
        other _statements;
                    *
                    *
     WHEN OTHERS => next_state <= reset_state;
   END CASE;
END PROCESS;
ate Machines in VHDL 21


	State Machines in VHDL
	Implementing state machines in VHDL is fun and easy provided you stick to some fairly well establ...
	The format for coding state machines follows the general structure for a state machine. Lets look...
	The Moore state machine consists of two basic blocks, next state decode (or steering) logic, and ...
	For a first example we will look at the state machine in TAS which holds the state of what type o...

	State Diagram for header_type_sm
	All your state machines should be documented in roughly this fashion. The name of the process hol...
	Every state machine has an arc from “reset”. This indicates what state the state machine goes to ...
	Each state in this example is given a name. In this case we are using a type for the states that ...
	Each possible transition between states is shown via an arc with the condition for the transition...
	It should be understood that all transitions occur on the clock edge.
	Outputs from the state machine should be listed. The only outputs from this state machine are its...

	State Machines (cont.)
	To use the enumerated state types in our example, we need to declare what they are. This would be...
	ARCHITECTURE beh OF ctrl_blk_50m IS --declare signals and enumerated types for state machines --f...

	The TYPE declaration states that we have a type called header_type_type and that the two only sta...
	This style of state machine state coding is called enumerated state encoding. It is flexible in t...
	Now using these state declarations, lets make the process that creates the state machine.

	State Machine Process Body
	Below we see the body of the process that creates the state machine.
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	header_type_ns <= temp_pkt; ELSE header_type_ns <= waiting; END IF ; WHEN temp_pkt => IF (byte_as...
	First we see that the process label is consistent with the documentation and the signal names we ...
	header_type_sm: PROCESS (clk_50, reset_n, a5_or_c3, byte_assembled, byte_cnt_ps, header_type_ps, ...
	Next the flip flops are created to hold the present state. This is what is commonly called the cl...

	State Machine Process Body (synchronous part)
	--clocked part IF (reset_n = ’0’) THEN header_type_ps <= waiting; ELSIF (clk_50’EVENT AND clk_50 ...
	Here we see an active low asynchronous reset that forces the present state to become the state ca...
	Following the reset clause, the “clock tick event” clause identifies the following statements to ...
	This concludes the clocked part of the process. We have created the necessary state flip flops an...
	Now we will create the next state steering logic. It consists only of gates, i.e.; combinatorial ...

	State Machine Process Body (combinatorial part)
	--combinatorial part CASE header_type_ps IS WHEN waiting => IF (byte_assembled = ’1’) AND (byte_c...
	To clearly make the next state logic, a structure is created where IF statements are tucked under...
	To further illustrate this:
	The CASE statement enumerates each possible present state:
	CASE header_type_ps IS WHEN waiting => --bla, bla, bla WHEN temp_pkt => --bla, bla, bla END CASE
	In any given state the IF determines the input conditions to steer the machine to the next state....
	WHEN temp_pkt => IF (byte_assembled = ’1’) AND (byte_cnt_ps = byte4) THEN header_type_ns <= waiti...

	State Machine Synthesis
	If we synthesize the state machine we see in the transcript:
	"/nfs/guille/u1/t/traylor/ece574/src/header.vhd",line 28: Info, Enumerated type header_type_type ...
	Encodings for header_type_type values value header_type_type[0] =============================== w...

	This tells us that the synthesis tool selected the value of ‘0’ to represent the state waiting, a...
	You might say, “That’s not the way I would do it.” But for the circuit this state machine was tak...
	The next state steering logic can be clearly seen to the left of the state storage (flip flop).

	Enumerated Encoding
	Using enumerated state encoding allows the synthesis tool to determine the optimal encoding for t...
	While enumerated encoding is the most flexible and readable, there are cases where we want to cre...
	As an example of a glitching state machine, lets build a two bit counter that has an output which...

	Counter State Machine with Decoded Output
	The code looks like this:
	ARCHITECTURE beh OF sm1 IS TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SIGNAL byte_cnt_ps, by...


	Specifying Outputs with Enumerated States
	In the proceeding code, we see one way an output other than the present state may be created. At ...
	--combinatorial part decode_out <= ’0’; --output signal CASE byte_cnt_ps IS
	In this example, the default value for the output decode_out is logic zero. The synthesis tool se...
	WHEN cnt1 => --output signal takes default value IF (enable = ’1’) THEN byte_cnt_ns <= cnt2; ELSE...
	Thus if the present state is cnt1, decode_out remains zero. However, if the present state is cnt2...
	WHEN cnt2 => decode_out <= ’1’; --output signal assigned IF (enable = ’1’) THEN byte_cnt_ns <= cn...
	We could have omitted the default assignment before the CASE statement and specified the value of...

	Specifying Outputs with Enumerated States
	What happens if we have a state machine with an output, yet do not specify the outputs value in e...
	If we specify a “off” or default value for each output signal prior to the case statement we will...

	State Machine with Decoded Outputs
	Note the declaration of the enumerated states: TYPE byte_cnt_type IS (cnt1, cnt2, cnt3, cnt4); SI...
	Typically, (i.e., may change with tool and/or vendor) with binary encoding, the state assignments...
	-- Loading entity sm1 into library work "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd",line 23: In...

	The circuit we get is shown below:
	Note the output decoding created by the XOR and NOT gate. If there are unequal delays from the fl...

	Glitches
	If we simulate this circuit without delays, we see the following. Note that the signal decode_out...
	When we are first creating a circuit, we usually simulate without delays. However, when we synthe...
	Once the synthesized circuit is created, we can invoke the vsim simulator with the sdf switch use...
	So, when we invoke vsim like this:
	vsim -sdfmax ./sdfout/sm1.sdf sm1

	delays are added to the circuit. To make the glitch clearer, I added an additional 1ns delay to o...

	State machine output with glitches
	So using enumerated types when coding state machines is a clear and flexible coding practice. How...
	So, lets see how we can make outputs that are always clean, without glitches for those special ca...
	grey coding, choosing states wisely, following flip flops, explicit states

	State Encoding for Glitchless Outputs
	One solution to creating glitchless outputs is to strategically select the state encoding such th...
	If the counter advanced in the sequence “00”, “01”, “11”, “10”, no glitch would be created betwee...
	Using grey coding in a counter makes an easy way to prevent output decoder glitches. However, in ...

	Glitchless Output State Machine Methodology
	The key to making glitchless outputs from our state machines is to make sure that all outputs com...
	The “cleanup” flip flop effectively removes the glitches created by the output decoder logic by “...
	The final solution alluded to above is to add one state bit that does not represent the present s...
	Lets see how we can code this style of state machine so that the synthesis tool gives us what we ...

	Coding the Glitchless State Machine
	Using our two-bit counter as an example here is how we could force an encoding that would allocat...
	First of all we decide up on our encoding.
	The present state vector we will declare as STD_LOGIC_VECTOR actually consists of a one bit vecto...
	Now, to create the present and next state vectors and assign their values as we have just stated,...
	--declare the vectors SIGNAL byte_cnt_ns : STD_LOGIC_VECTOR(2 DOWNTO 0); SIGNAL byte_cnt_ps : STD...
	--state encodings CONSTANT cnt1 : STD_LOGIC_VECTOR(4 DOWNTO 0) := "000"; CONSTANT cnt2 : STD_LOGI...

	The use of CONSTANT here allows us to use the names instead of bit vectors like our enumerated ex...

	Coding the Glitchless State Machine
	The rest of our state machine is coded identically to the enumerated example given previously wit...
	Remember that the output signal is now really a part of the vector byte_cnt_ps. How do we associa...
	decode_out <= byte_cnt_ps(2); --attach decode_out to bit 2 of _ps

	This piece of code can be placed in a concurrent area preferably adjacent to the process containi...
	Also, since we are not covering every possibility in our CASE statement with our four CONSTANT de...
	WHEN OTHERS => byte_cnt_ns <= (OTHERS => ’-’); END CASE; (OTHERS => ’-’)

	This code segment implies when no other case matches, the next state vector may be assigned to an...
	The mysterious portion of the above: (OTHERS => ’-’)
	Really just says that for every how many bits are in the vector (all the others) assign a don’t c...
	Lets look at the new and improved state machine code and the synthesized output.

	Code for the Glitchless Output State Machine
	ARCHITECTURE beh OF sm1 IS --declare the vectors and state encodings SIGNAL byte_cnt_ns : STD_LOG...

	Synthesized Glitchless Output State Machine
	Here is the synthesized output for our glitchless output state machine:
	Whoa, you say. That’s not what I expected. Here is a case where the synthesis tool did what you “...
	Other tools may or may not behave in the same way. Once again, it pays to checkout the transcript...
	-- Compiling root entity sm1(beh) "/nfs/guille/u1/t/traylor/ece574/src/sm1.vhd", line 27: Info, D...

	The moral of the story... read the transcripts. Don’t trust any tool completely. Double check eve...

	State Machines in VHDL - General Form
	As seen in the previous example, most state machines in VHDL assume the following form:
	process_name: PROCESS(sensitivity_list) BEGIN --synchronous portion IF (reset = ‘1’) THEN present...



