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Abstract

Research on the nature of the vibration data collected from helicopter transmissions during flight
experiments has led to several crucial observations believed to be responsible for the high rates of false
alarms and missed detections in aircraft vibration monitoring systems. This work focuses on one such
finding, namely, the need to consider additional sources of information about system vibrations. In
this light, helicopter transmission vibration data, collected using triaxial accelerometers, are explored in
three different directions, analyzed for content, and then combined using Principal Components Analysis
(PCA) to analyze changes in directionality. The frequency content of the three different directions is
compared and analyzed using time-synchronously averaged vibration data. To provide a method for
analysis and monitorin purposes, the triaxial data are decorrelated using a mathematical transformation,
and compared to the original axes to determine their differences. The benefits of using triaxial data
for vibration monitoring and diagnostics are explored by analyzing the changes in the direction of the
principal axis of vibration formed using all three axes of vibration. The statistical variation introduced
due to the experimental variables is further analyzed using an Analysis of Variance approach to determine
the effect of each variable on the overall signature. The results indicate that triaxial accelerometers can
provide additional information about the frequency content of helicopter gearbox vibrations, and provide
researchers and industry with a novel method of capturing and monitoring triaxial changes in the baseline
vibration signatures.

Keywords: Vibration analysis, gearbox diagnostics, fault detection, triaxial vibration measurement,
Principal Components Analysis.

Monitoring Helicopter Gearbox Vibrations

Ever-increasing demand in power, performance, and safety, along with frequent failures resulting in
financial losses have made fault detection and diagnostics in rotating machinery a challenging task [1].
In high-risk aerospace applications, stringent requirements in safety and performance have been the main
driving factors for research in condition monitoring systems. In particular, current research focuses on
implementing on-board condition monitoring systems to detect and diagnose failures in rotorcraft transmis-
sions [1]. Vibration emanating from the transmission gearbox is a prime candidate for monitoring, as many
of the failures that occur due to the rotating components (gears, bearings) show their symptoms as changes
in the frequencies and amplitudes of vibration signatures. Gearboxes have been investigated in great detail
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to understand the types of baseline frequencies and failure indicators one can detect by monitoring vibra-
tions [1, 2, 3, 4]. In particular, experimental investigations of vibration data have contributed tremendously
to the field, providing a means to test algorithms and techniques to detect and diagnose failures and defects
[5, 6, 7, 8, 9, 10, 2, 11].

For rotorcraft applications, Health Monitoring and Usage Systems (HUMS) in helicopters are viewed as
the future solution to the strict performance and safety requirements [7, 8, 12, 13]. Despite the motivation
to implement such systems on board helicopters, most systems are still being used on an evaluation basis,
mainly due to the large number of false alarms and warnings that compromise the validity of such systems.
One of the main sources of unreliability is the statistical variation in baseline vibration signatures, which po-
tentially masks the real failure effects, hence resulting in frequent false alarms. Previous work has explored
the sources of variation during regular flight conditions, using actual helicopters as well as test rigs; it was
shown that various uncontrollable factors such as regular maneuvering and maintenance result in significant
deviations in the vibration signal, and should be accounted for prior to implementing on-board monitoring
systems [9, 10]. To address questions about the validity of helicopter monitoring systems, vibration data
are collected at the NASA Ames Research Center during flight using a series of research helicopters, in a
carefully controlled flight environment. These data, along with test rig data, are being analyzed for various
research purposes, with the overall goal of building an understanding of variations due to baseline changes
and failures in helicopter gearbox vibrations [9, 10, 14, 15, 16].

Paper Focus

Typical vibration monitoring is performed using single-axis accelerometers placed radially on the trans-
mission housing [8, 9, 17]. Attempts have been made to capture frequencies by using a large number of
single-axis accelerometers mounted in various directions [2]. While acceptable for test stands, weight and
space limitations prohibit the use of additional accelerometers in actual helicopters. In addition, test stands
only simulate a subset of the conditions during actual flight. For example, frequencies appear in real flight
data due to engine gear mesh frequencies, causing considerable clipping of the vibration data near the pin-
ion [10].

This paper explores the use triaxial accelerometers, rather than single-axis accelerometers, and proposes
a methodology to analyze and monitor the multiple axes of information [15]. While the potential benefit
of triaxial accelerometers has been recognized in the literature, there is no established method to help with
the analysis of such data, leaving the analysts with yet more data to process through [18, 19, 20, 2, 17]. In
this light, an exploration of the different vibrational directions is presented first using an illustrative example
from actual flight data. Principal components analysis (PCA) is used to rotate the three axes to obtain a
direction with maximum variance, determined by the principal axis and its angles with the original axes.
The main contribution of this paper is in presenting evidence for the need to use triaxial accelerometers
for vibration monitoring, and providing analysts with a sound method to analyze and monitor the multiple
directions of vibration.

Data Collection and Processing

For the purposes of this paper, vibration data are collected from an OH-58C helicopter transmission
gearbox. As shown in Figure 1, accelerometers are mounted on the bolts around the housing in 4 locations.
The data collection system (HealthWatch-I, see [10]) collects 8 channels of data including: vibration data
from 3 single-axis accelerometers, mounted radially to the housing (Channels 1-3, bolts 2, 6, and 10);
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Figure 1: Gearbox Tranmission Housing.

vibration data from a triaxial accelerometer mounted such that the X direction is vertical to the housing, the
Y direction is tangential to the housing, and the Z direction is radial to the housing (Channels 4-6, bolt 13);
torque data (Channel 7); and, tachometer pulse data (Channel 8). All of the channels are sampled at a rate
of 50kHz per channel, for about 34 seconds, corresponding to over 190 revolutions of the output rotor [9].

In order to isolate frequencies specific to different gears in the transmission, the raw vibration data are
averaged using time-synchronous averaging (TSA) techniques [1, 21, 3, 4]. Time-synchronous averaging
reduces the background noise and non-synchronous components, leaving a more accurate estimate of the
vibration signal components. This process can be repeated for each gear in the transmission system to
provide the vibration signal relative to that particular gear [1]. As a result, in this paper, three different sets
of data, computed from the raw triaxial accelerometer data, are analyzed: 1) data averaged based on one
revolution of the pinion gear (TSP data, 512 points); 2) data averaged based on one revolution of the bevel
gear (TSF data, 2048 points); 3) data averaged based on one revolution of the output carrier to the epicyclic
gear system (TSC data, 8192 points). Throughout this paper, the data are referred to in their abbreviated
form as TSP (time-synchronous with the pinion), TSF (time-synchronous with the bevel gear), and TSC
(time-synchronous with the carrier).

Expected Frequencies for an OH-58C Gearbox

The OH-58C helicopter transmission is a two-stage reduction box [2]. The first stage consists of a spiral
bevel pinion gear (Npiniongear =19 teeth), driven by the input shaft from the engine side, rotating at a speed
of 6180 rpm (103 Hz), which meshes with a bevel gear (Nbevelgear =71 teeth). A planetary mesh provides
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the second reduction stage [2]. The epicyclic gear system consists of a sun gear (Nsun =27 teeth), splined to
the bevel gear shaft, which in turn drives four planet gears (Nplanet =35 teeth each). The planet gears mesh
with a ring gear (Nring =99 teeth), which is attached to the top case. Power is transmitted through the planet
carrier, which is attached to the mast output shaft. The overall reduction of the main power train is 17.44:1,
driving the main rotor at 354 rpm.

The vibration signal is expected to contain all frequencies due to the meshing between the different sets
of gears, their harmonics, and sidebands. The mesh frequencies are computed as the input speed to the gear
set multiplied with the number of teeth [22, 4]. The pinion mesh frequency is equal to FpiniongearNpiniongear ;

the bevel gear rotational frequency is equal to Fpiniongear
Npiniongear

Nbevelgear
; the bevel gear mesh frequency is equal to

NbevelgearFbevelgear (also equal to pinion mesh frequency); the sun gear mesh frequency is equal to Fbevelgear

times Nsungear; the carrier frequency is equal to Nsun
Nsun+Nring

Fpiniongear
Npiniongear

Nbevelgear
; the epicyclic mesh frequency is

equal to FcarrierNring; and, the planet passing frequency is equal to Nplanet Fcarrier.
For the OH-58C transmission gearbox, the following frequencies are computed: Fpiniongear = 103Hz;

Fpinionmesh = 1957Hz, with harmonics at integer multiples K = 1;2;3::: and sidebands at �K�Fpiniongear

and �K�Fbevelgear ; Fbevelgear = 27:56Hz; the bevel gear mesh frequency equals Fbevelmesh = 1957Hz, with
harmonics at its integer multiples, and sidebands at�K�Fbevelgear and �K�Fpiniongear ; Fsungear = 27:56Hz
(equal to Fbevelgear); Fsunmesh = 744:12Hz, with harmonics at its integer multiples, and sidebands at �K�
Fplanet ; Fcarrier = 5:91Hz; Fplanet = 206:85Hz. For an epicyclic gear system with a single planet gear,
the epicyclic mesh frequency equals Fepicyclicmesh = 584:74Hz, with its harmonics at integer multiples, and
sidebands at �K�Fbevelgear , �K�Fcarrier, and �K�Fplanet . However, for a multi-planet epicyclic system,
these frequencies appear clustered around the mesh frequency and its sidebands, and their harmonics, not
necessarily coinciding with the exact frequencies: for an equally-spaced 4-planet system, the frequencies
appear at multiples of 4 of the carrier frequency. In reality, the geometry of the planet gears is such that
only 2 planets are equally spaced, but the two sets of two planets are not equally spaced. In such a case, the
frequencies for the epicyclic system appear only at even multiples of the carrier frequency.

In addition to the transmission frequencies, there are a number of frequencies emanating from the engine
used to drive the pinion gear in the transmission. These frequencies are also expected to appear as part
of the vibration data measured at the transmission housing. For example, the power output gear rotates
synchronously with the pinion gear, and hence is expected to have a frequency component in the TSP data.

Flight Experimental Design

The flight experiments using research helicopters are conducted using a controlled set of experimental
flight conditions, based on a latin square experimental design [9, 23]. Such an experimental design allows for
various sources of variation and their interactions to be investigated and quantified in a systematic fashion. In
this design, 2 pilots fly 14 maneuvers each, and repeat each maneuver three times, in two different sets. The
maneuvers are selected with the help of the research pilots to cover a representative set of stable conditions
typical of flight. These maneuvers are listed and explained in Table 1. The entire experimental design matrix
consists of 8 flights [9]. Based on this design, each flight consists of 22 maneuvers, resulting in 176 files
(test conditions) total. Test conditions refer to each combination of maneuver, pilot, training set, and order.
The test conditions were counter-balanced to assure that gross weight and ambient temperature changes did
not bias the results. For reference, the sequence of the maneuvers for the latin-square design are shown in
Table 2.

Throughout the rest of the paper, a specific maneuver is referred to by its abbreviated description (such
as: FCLP for forward climb, low power; SR for sideward flight, right turn; etc.)
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Table 1: Flight Maneuvers and Description.

Maneuver Letter Name Description

A FFLS Forward flight, low speed, level
B FFHS Forward flight, high speed, level
C SL Sideward flight, left, level
D SR Sideward flight, right, level
E FCLP Forward climb, low power flight
F FDLP Forward descent, low power flight
G G Vehicle on ground skids
H H Stationary hover
I HTL Hover turn left
J HTR Hover turn right
K CTL Coordinated turn left
L CTR Coordinated turn right
M FCHP Forward climb, high power
N FDHP Forward descent, high power

Table 2: Flight Maneuver Sequence.

Flight Pilot Set Sequence

1 1 1 GHABCDEFBCDEFACDEFABHG
2 1 1 GHIJKLMNJKLMNIKLMNIJHG
3 2 1 GHABCDEFBCDEFACDEFABHG
4 2 1 GHIJKLMNJKLMNIKLMNIJHG
5 2 2 GHDEFABCEFABCDFABCDEHG
6 2 2 GHLMNIJKMNIJKLNIJKLMHG
7 1 2 GHDEFACBEFABCDFABCDEHG
8 1 2 GHLMNIJKMNIJKLNIJKLMHG

Technical Approach

Triaxial vibration data can either be analyzed separately in each of the three measurement directions,
or combined in some mathematical form for analysis. The methodology in this paper performs a Principal
Components Analysis (PCA) on the triaxial data to put the three axes of measurement into one “principal
axis” with maximum variance [24, 15, 16, 25]. This method of combining the three axes of vibration
recordings hierarchically reorganizes the orthogonal variations, while removing the correlation between the
physical recording axes.

The following subsections present the foundations of this technique by applying it to empirical data
collected during flight. First, the analysis of individual TSA data is presented for each triaxial direction.
Then, the individual directions are compared to the transformed optimal (maximum variance) directions.
Despite of many deficiencies of using fft-based techniques (especially in the presence of nonstationary
methods), the standard power spectrum is easy to interpret and visualize, and hence is used in this paper as
a preliminary tool to compare the frequency content in the different measurement directions. Following a
detailed analysis of the different vibrational directions, the PCA transformation is first performed on a single
test condition. The results of analyzing the statistical nature of the PCA angles are presented to provide a
possible monitoring metric. Finally, the angles of the first principal axis are considered for monitoring and
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quantifying baseline changes in the vibration signatures for each test condition. The maneuvers are described
in Table 1, followed by a listing of the test sequence for each flight in Table 2. The analysis ends with a
transformation using the entire set of experiments to derive generalized, experiment-wide eigenvectors.
The generalized eigenvectors are then compared with the eigenvectors from individual test conditions to
determine whether they can be used to predict the vibrational modes for each test condition. If the answer is
yes, then the generalized eigenvectors can be used as a model of the “baseline” state of the dynamic system.
Using the generalized eigenvectors, new test conditions can then be tested to determine their “health”.

An Illustrative Example using Sample Triaxial Data

To illustrate, vibration data from the triaxial accelerometer for Flight 1, file 4, Maneuver FFLS are used
as an example. The data are plotted in three directions in Figure 2. The n�m input matrix for these data
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Figure 2: 3D Plot of the Triaxial Vibration Data (TSP data, flight 1, file 4, maneuver FFLS).

becomes X = [X Y Z], where the columns X , Y , and Z correspond to the vibration data from the triaxial
accelerometer for one test condition, synchronously averaged based on one revolution of the pinion gear
(TSP data, n = 512). (X is the vertical direction, Y is the tangential direction, and Z is the radial direction.)
It is assumed that the X , Y , Z data have been centered (mean is removed). For PCA, the m = 3 columns
correspond to variables, and the n = 512 rows correspond to observations. PCA results in three output
matrices, namely PC, SC, and LAT . The eigenvectors of the m�m (m = 3) covariance matrix correspond
to the columns of the PC matrix, which is also an m�m (m = 3) matrix. The n�m (512� 3) SC matrix
corresponds to the rotated variables, where each column corresponds to each principal component. The
m�1 (3�1) LAT vector corresponds to the eigenvalues for each eigenvector (variance of each of the score
columns.) PCA in Matlab for the triaxial data in this example results in the following outputs:

LAT =

2
4

365:1637
40:9655
14:8314

3
5 ; PC =

2
4

0:1324 �0:9142 �0:3830
0:9680 0:2024 �0:1486

�0:2133 0:3510 �0:9117

3
5

Algebraically, the principal components are linear combinations of the original variables X , Y , and Z
(centered), which represent the selection of a new coordinate system after rotating the original coordinate
system [24]. The first principal component, whose coefficients (eigenvectors) are indicated in the first
column of the PC matrix, is the linear combination with the highest variance, described as 0:1324X +
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0:9680Y � 0:2133Z (using centered variables X , Y , Z). This is computed as X �PC, which is equivalent to
the columns in the SC matrix. (This matrix is not shown due to its large dimensionality; see representative
plot in Figure 3.) The coefficients imply that the leading principal component is weighted most by the
original Y axis (0:9680 in the PC matrix), and about equally by the other two original axes. By contrast, the
second principal component is weighted most by the X axis (�0:9142), and the third principal component
by the Z axis (�0:9117). If the physical axes were set up perfectly for the original triaxial data, these weights
would be 1.0, and the remaining weights would be equal to 0.

The variance of the first principal component is equal to the first eigenvalue (the variance of the first
column of the score matrix), computed as the first element in the LAT vector. The first principal component
accounts for 86:75% of the total variance with an eigenvalue of λ1 = 365:16, whereas the second principal
component accounts for 9:73% of the total variance with an eigenvalue equal to λ2 = 40:96. Each column
of the score matrix corresponds to the variation of the new eigenvectors (PC matrix) over the n = 512
observations. A plot of the scores is shown in Figure 3 for each of the eigenvectors. The first principal
component represents the mode with the largest amplitude. Such plots can be used to monitor changes in
each of the principal components [25].
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Figure 3: Scores: Variation of the PCs in Observations (TSP data, flight 1, file 4, maneuver FFLS).

Computation of Principal Axis Angles for Illustrative Example

Accounting for the majority of the variance in the data, the first principal component is sufficient to
represent the largest effects in the triaxial vibration data. As a result, it makes sense to assume that major
changes in the experimental conditions will be captured using this axis only. The elements of the PC
matrix from the analysis above correspond to the eigenvectors of the 3� 3 covariance matrix using the
centered input matrix X. Conceptualizing the first principal component as the axis of maximum variation,
the following angles are computed, based on the conceptual projection shown in Figure 4. These angles
should remain most likely constant unless there is a significant change in the baseline vibration signatures.
Based on this schematic, the angles for the first principal axis are computed as follows:

θ = atan(
b
a
) = atan(pc(2;1)=pc(1;1))�180=π= 82:21;
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Figure 4: First Principal Component and its Angles.

α = atan(
c
a
) = atan(pc(3;1)=pc(1;1))�180=π=�57:17:

These angles are computed for all of the test conditions. The changes in these angles are analyzed to
determine the effects of the experimental conditions on the direction of maximum variance.

Frequency Content for Different Gear Sets

The frequency content for each test condition is analyzed to determine the differences observed in the
three directions of the triaxial accelerometer. Figures 5, 6, and 7 show the power spectra for each time-
synchronously averaged data set (TSP, TSF, TSC data) using Flight 1, file 4, maneuver FFLS as an example.
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Figure 5: Power Spectra in X, Y, and Z Directions. TSP data, flight 1, file 4, maneuver FFLS.

The power spectra for the TSP data show all frequencies that are synchronous with the pinion gear
rotation; the spectra for the TSF data show the frequencies that are synchronous with the bevel gear rotation;
and, the spectra for the TSC data show all frequencies that are synchronous with the epicyclic output rotation.
The expected frequencies that were computed are presented in the introductory sections. The x-axis of the
spectra is presented in frequency ”counts”, which corresponds to the frequency divided by the rotational
frequency of the gear of interest, or ”order”. For example, for the TSP data, a frequency component at
bin 19 will correspond to the pinion mesh frequency, equal to the number of teeth in the pinion times the
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Figure 6: Power Spectra in X, Y, and Z Directions. TSF data, flight 1, file 4, maneuver FFLS.
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Figure 7: Power Spectra in X, Y, and Z Directions, TSC data, flight 1, file 4, maneuver FFLS.

rotational frequency of the pinion gear (see section on expected frequencies). Similarly, for the TSF data, a
frequency component at bin 71 is the mesh frequency of the bevel gear, and, for the TSC data, a frequency
component at bin 99 is the epicyclic mesh frequency (Npiniongear = 19; Nbevelgear = 71; Nringgear = 99.)

As shown in Figure 5, the power spectrum for the TSP data shows the pinion mesh frequency at bin 19
(P1), its second harmonic at bin 38 (P2), and its third harmonic at bin 57 (P3), as well as two additional
frequency components at bins 32 (E1) and 48 (E2). These last two frequency components are likely to
emanate from the engine side. The engine has gears that are synchronous with the engine output shaft,
which rotates at the same speed as the pinion gear [10]. The power spectrum for the TSF data in Figure
6 shows the bevel gear mesh frequency at bin 71 (F1), its second harmonic at bin 142 (F2), and its third
harmonic at bin 213 (F3), as well as some additional frequencies at bins 21 and 121, which appear at �50
bins from the bevel gear mesh frequency, possibly corresponding to a sideband. The power spectrum for
the TSC data in Figure 7 shows the epicyclic mesh frequency around bin 99 (C1), and all of its harmonics
(multiples of 2 through 10). In particular, the sixth harmonic around bin 594 (C6) and tenth harmonic around
bin 990 (C10) dominate the spectra for most of the test cases (see discussion on epicyclic frequencies).
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Frequency Content in Different Directions

The differences in the three directions X (vertical), Y (tangential), and Z (radial) of the triaxial ac-
celerometer are also presented in Figures 5, 6, and 7 for comparison. For the TSP data (pinion rotation), the
tangential Y direction shows the highest energy components, dominated by the engine frequency at bin 48
and the third pinion mesh harmonic at bin 57 throughout the 176 test conditions. The vertical X direction
shows slightly higher magnitudes than the radial Z direction, consistently throughout the test conditions.
The vertical X direction is dominated by the frequency at bin 33 and the second pinion mesh harmonic at
bin 38 throughout the 176 test conditions. The radial Z direction has the smallest magnitude and shows
alternating frequency components (at the pinion mesh, its harmonics, and at bin 48 for a few cases) dom-
inating the frequency content throughout the test conditions. The analysis of the frequencies in the three
different directions shows that the tangential Y direction is best to monitor the effect of the component at
bin 48, and that the vertical X direction is best to monitor the effect of the component at bin 33. The ra-
dial Z direction is much lower in energy and can be better used to monitor the changes in the pinion mesh
frequency and its harmonics. Similar observations can be made based on the TSF (bevel gear rotation),
with the tangential Y direction containing the highest energy vibrations, and the frequency content being
dominated by the third harmonic of the bevel gear mesh frequency. Just as for the pinion-synchronous data,
the remaining two directions capture vibrations of much lower energy (by an order of magnitude) than the
tangential direction. The TSC (carrier) data show much higher vibrational energy in X and Z directions than
the other two synchronous data sets; the vibrational energy in this case is equal to the energy levels in the
tangential Y direction, with the X direction showing the slightly lower energy, and hence a much noisier
frequency spectrum.

The results of this analysis show that each of the three directions can be used to monitor different com-
ponents of the frequency distribution, highlighting a potential benefit of using triaxial accelerometers in
addition to single-axis accelerometers. This becomes much more evident in the case of actual flight condi-
tions where different maneuvers can result in an increase or decrease of the vibrational energy in different
directions. The results also give additional insight about the directionality of the vibration depending on the
gear set under study. The changes caused by the different test parameters will be studied further.

Signal Content of Triaxial Accelerometer Data

The time-synchronously averaged data are used next to decorrelate the three directions and find a pre-
ferred direction with maximum variance for the triaxial accelerometer data. Figure 8 presents the com-
parison of the power spectra in the X , Y , Z directions with the power spectra of the scores for the new
”directions” described by the decorrelated principal components SC1, SC2, and SC3, for two of the maneu-
vers, Hover and FFLS, flight 1, pilot 1 (files 3 and 4). As can be observed from these comparative plots, the
tangential direction Y is equivalent in frequency content to the first principal component scores (SC1) and
the vertical direction X is equivalent to the second principal component scores (SC2). The results throughout
the experiment show that for the TSP data, the triaxial accelerometer was placed in such a way that one of
the directions corresponds to the direction of maximum variance defined by the first principal component.
The same results are found for the TSF and TSC data, though the distinction between the remaining two
axes X and Z is not as clear as in the case of the TSP data.
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Figure 8: Power Spectra of Triaxial Vibration Data in X, Y, and Z Directions vs. Power Spectra of Scores
from Principal Components Analysis. Flight 1, file 3, maneuver hover and flight 1, file 4, maneu-
ver FFLS.

Statistical Analysis of Directional Changes

The angles of the first principal ”direction” are computed next using each of the TSA data sets. The
change in these angles provides interesting insight into the vibrational signature changes. Figure 9 shows a
plot of the θ angle of the first principal component (see Figure 4) for flights 1 and 2, covering the entire set
of 14 maneuvers for the TSP data. Each of the test conditions has been labeled to show the trends due to the
different maneuvers. As can be observed from these plots, there are consistent changes in the θ angle due to
the different maneuvers in both flights.

The θ angles for all of the 176 test conditions for 8 flights are shown in Figure 10. The plots for the 8
flights are arranged to follow the latin-square test sequence (Table 2). The Y-axis for each plot corresponds
to the θ angle in Degrees, and the X-axis corresponds to the file number (22 total) for each flight. Several
points need to be reminded at this point. First, flights 1, 3, 5, and 7 contain the same set of maneuvers (A-E,
plus G and H) and flights 2, 4, 6, and 8 contain the same set of maneuvers (I-N, plus G and H). In addition,
the following sets of flights have the same maneuver sequence, but different pilots: 1 and 3, 5 and 7, 2 and
4, 6 and 8. Finally, flights 1 & 3 and flights 5 & 7 represent two different training sets. With this knowledge
at hand, the plots show a distinctive pattern depending on which set of maneuvers are flown: flights 1, 3, 5,
and 7 follow a similar trend in the θ angle, which is visibly different than the trend followed by the plots for
flights 2, 4, 6, and 8 for the second set of maneuvers. In addition, there are slight differences introduced due
to the different pilots and different training sets. The plots of the second angle α of the optimal direction
(first PC) show similar conclusions, as shown in Figure 11. These angles are computed for each of the TSA
data sets for further analysis of specific gear sets.

The observations about the changes in the angles of the first principal component warrant further study.
An effective means of determining the effect of each experimental parameter is by means of an Analysis
of Variance (ANOVA) study [9, 10, 23]. A simple hierarchical ANOVA is being used here as a descriptive
tool to show how the total change in directionality is related to the experimental conditions and covariate
measures. This analysis partitions the statistical variation in the variable of interest with respect to the
covariates, each of the experimental variables, and their higher-order interactions. Table 3 presents the
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Figure 9: Change in Theta Angles for First Principal Component. All Maneuvers, flights 1 and 2.

results of ANOVA performed on the θ and α angles for all of the test conditions using the TSP, TSF, and
TSC data. The covariate of interest is the torque variable, which was shown to have a significant effect on
the vibrational energy in previous work [9, 10]. The main effects (maneuver, order, pilot, and training set)
and their second-order interactions are listed in the second column. The remaining columns provide the
results using each time-synchronously averaged data set, for the two variables from the PCA method, θ and
α. The percentage of the total Sum-of-Squares (%SS) is shown for each experimental factor, as well as the
significance of each factor. The %SS provides an idea of the percentage of total variance represented by
each of the factors. The significance of each factor is reflected in the ”Sig:” column, with 0:00 indicating a
very low probability of rejection, and hence a high probability of occurrence (implying high significance),
and 0:94 indicating a very high probability of rejection, and hence a low probability of occurrence (hence
low significance) [23]. The Ground (G) maneuver has been excluded from the analysis due to its distintively
different conditions for vibration. The study in this paper concentrates on the flight maneuvers only.

As shown in Table 3, the empirical model formed by means of the ANOVA results explains the majority
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Figure 10: Change in Theta Angles, TSP data, flights 1-8.

of the total variance in the data: for example, for the θ variable, the ANOVA model captures 86:02% of the
total variance in the TSP data, divided amongst the covariate (13:95%), main factors (46:59%), and their
second-order interactions (25:48%). The results of the ANOVA study indicate a strong influence of the
maneuver factor on the optimal direction of vibration (defined by the angles θ and α) for each of the gear
sets (TSP, TSF, and TSC data): for the θ angle, maneuvering changes account for 44:77% of the variance
in the TSP data, 50:40% of the variance in the TSF data, and 27:91% in the TSC data, each at a very high
significance level (0.00). In addition to maneuvering, the second-order interaction of maneuver with pilots
has a significant contribution to the total variance in the vibration data, as shown for each of the TSA data
cases, for both angle variables. Finally, mean torque changes account for a large portion of the total variance,
as shown for each of the cases in Table 3. The second-order interaction of maneuver with training set also
shows some significance for both TSP and TSF data sets, but not for the TSC data set.

The previous results showed the same dependence in a qualitative way, as shown in Figures 10 and 11.
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Figure 11: Change in Alpha Angles, TSP data, flights 1-8.

The maneuvers introduce a significant change in the direction of the optimal axis of vibration, and the pilots
fly each of the maneuvers differently. In addition, the maneuvers are flown slightly differently in each of the
training sets. The ANOVA model describes these observations more accurately by means of an empirical
model [23]. Finally, as shown in previous work [9, 10], the torque covariate has a significant effect on the
vibrational signatures. As a result, the analysis presented here has been performed on the data after the
effect of the torque covariate has been removed. Torque has the highest contribution in the carrier-based
TSC data, representing 12:08% of the total variance in θ and 27:65% of the total variance in α, and the
smallest contribution in the bevel gear-based TSF data, accounting for 10:04% of the total variance in θ and
only 2:21% of the total variance in α. The possible reasons for the varying contributions of torque require
further study of the geometry of the gears and the forces involved.
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Table 3: ANOVA Results for all Angles.

TSP TSF TSC
θ α θ α θ α

Category Source %SS Sig: %SS Sig: %SS Sig: %SS Sig: %SS Sig: %SS Sig:

Covar. Torque 13.95 0.00 7.66 0.00 10.04 0.00 2.21 0.00 12.08 0.00 27.65 0.00
Main Combined 46.59 0.00 64.74 0.00 51.67 0.00 67.79 0.00 29.47 0.00 41.68 0.00

Maneuver 44.77 0.00 63.45 0.00 50.40 0.00 65.06 0.00 27.91 0.00 40.98 0.00
Order 0.38 0.32 0.81 0.05 0.52 0.15 1.05 0.02 0.04 0.93 0.02 0.93
Pilot 1.05 0.01 0.16 0.27 0.06 0.52 0.61 0.04 1.19 0.05 0.17 0.31
Set 0.39 0.13 0.32 0.12 0.70 0.02 1.07 0.01 0.33 0.29 0.50 0.09

2-Way Combined 25.48 0.00 16.72 0.00 27.01 0.00 18.79 0.00 33.88 0.00 16.60 0.00
Man.*Order 2.26 0.94 1.62 0.96 4.64 0.11 3.78 0.27 10.30 0.10 4.70 0.28
Man.*Pilot 16.04 0.00 8.88 0.00 9.49 0.00 7.93 0.00 17.28 0.00 8.89 0.00
Man.*Set 6.29 0.00 5.77 0.00 12.00 0.00 6.73 0.00 5.73 0.09 2.74 0.19
Order*Pilot 0.48 0.24 0.19 0.48 0.41 0.22 0.06 0.79 0.22 0.69 0.12 0.70
Order*Set 0.06 0.84 0.10 0.68 0.08 0.74 0.12 0.63 0.26 0.64 0.04 0.89
Pilot*Set 0.01 0.85 0.00 0.92 0.02 0.72 0.07 0.47 0.00 0.96 0.01 0.83

Model 86.02 0.00 89.12 0.00 88.72 0.00 88.80 0.00 75.42 0.00 85.93 0.00
Residual 13.98 10.88 11.28 11.20 24.58 14.07
Total 100.00 100.00 100.00 100.00

PCA Transformation on the Overall Experiment

As the PCA transformation extracts the principal “modes” of vibration from the input data, it is hypoth-
esized in this work that there will be similarities between the individual test conditions [16]. If generalized
modes of vibration exist, the eigenvectors should look similar, with different weights for each test condi-
tion indicating the changes due to the experimental factors (projection of each individual condition onto the
experiment-wide eigenvectors.) To test this hypothesis, the PCA transformation is performed on an input
matrix that includes all of the individual test conditions, concatenated into one large matrix. Each individual
n�m input matrix is Xi = [XiYiZi], where the columns Xi, Yi, and Zi correspond to the vibration data from
the triaxial accelerometer for one test condition, synchronously averaged based on one revolution of the
pinion gear (TSP data, n = 512, m = 3.) The overall input matrix Xall has all of the test conditions includ-
ing 22 files for each of the 8 flights, adding up to 176 files. The dimensionality of Xall is N �M, where
N = 512� 22� 8 = 90112 and M = 3 in this case. PCA (performed in Matlab) for the entire set of test
conditions results in the following outputs:

LATall =

2
4

299:1607
59:4100
6:9852

3
5 PCall =

2
4
�0:1853 �0:9458 �0:2667
�0:9612 0:2310 �0:1511

0:2045 0:2283 �0:9519

3
5

As in the case of the individual test conditions, the coefficients in the PCall matrix indicate that the first
principal component (accounting for 81:94% of the total variance from the LATall vector) is weighted most
by the original Y axis (�0:9612), the second principal component (accounting for 16:25% of the total vari-
ance) by the original X axis (�0:9458), and the third principal component by the Z axis (�0:9519). The
scores for the experiment-wide input matrix are shown in Figure 12 for the first N = 512 points for compar-
ison with the scores for the individual test conditions (see Figure 3). The power spectra corresponding to
these scores are shown in Figure 13 for comparison with the power spectra for the individual cases discussed
in Figure 8. The similarities between the individual egenvectors and the experiment-wide eigenvectors are
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Figure 12: Experiment-wide PCA Score Vectors (the first N = 512 points are shown for comparison with
individual case)

apparent from this comparison. Individual test conditions can be analyzed using the eigenvector models
generated from the entire set of experiments [16]. For example, a new test condition can be analyzed by
projecting the vibration data onto the set of generalized eigenvectors (representing the overall baseline state
of the flight, including all vibrational modes). The corresponding score matrices will determine whether the
new test condition belongs to the general baseline state or whether it deviates from it, implying a potential
failure or defect. Future work will explore such models.

Concluding Remarks

This paper presents results from analyzing vibration data, collected during actual flight tests, using a
triaxial accelerometer mounted on an OH-58C helicopter’s transmission housing. The triaxial accelerometer
measures vibration data in directions that are vertical, tangential, and radial to the transmission housing
(X , Y , Z). Using these data, a method with the potential to improve current gearbox fault detection and
diagnostics efforts is presented. The method involves transforming the triaxial vibration data to find the
direction of vibration with maximum variance using a mathematical transformation, and computing the
angles of the principal directions. These variables are then used to quantify the statistical variation in the
vibrational signature using an Analysis of Variance approach, in an effort to understand the sources of
baseline changes. Baseline changes cause inherent variations in the data, resulting in frequent false alarms
for condition monitoring systems in helicopters.

The results demonstrate that the time-synchronously averaged data in three directions provide additional
insight into the frequency content and the dynamics of the vibration. Each of the directions can be analyzed
separately to detect potential changes and failure indicators. Specifically, the directionality of the maximum
variance axis of vibration is used to quantify the statistical variation in the data, and shows that maneuvering
and torque changes, as well as higher-order interactions of maneuver with the remaining factors, have a
significant effect on the baseline vibration signatures. The results from this analysis provide a means to help
eliminate the problem of false alarms by providing a richer basis for meaningful diagnostic analysis, and
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Figure 13: Power spectra for the experiment-wide PCA scores (Nfft=512.)

hence warrant further study. Future work includes in-depth analysis of the torque effect on the forces acting
on the different sets of gears in the transmission, comparison with previous work on monitoring the variance
of the vibration data over the entire experiment design, extension to other platforms including the Cobra
AH-1 helicopter, and extension to test rig data with seeded faults. In addition, further research is necessary
to investigate the value of projecting new (faulty) test conditions onto the generalized eigenvectors for failure
detection. The preliminary results, presented in this paper, demonstrate the potential value of using triaxial
vibration recordings, in conjunction with the proposed PCA-based approach, to monitor changes in the
vibrational signatures during flight. The observed differences in the PCA output variables (eigenvalues,
eigenvectors, or the derived rotation angles) need to be studied further to assure that sufficient statistical
sampling is provided and to understand their sampling distributions.
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