HC 407 (2 Cr.) – Exploring the Magic of Physics via Hands-On Service Learning
Spring Quarter 2017
University Honors College
Oregon State University
2017.04.04

PROJECT DESCRIPTION: Exploring the Magic of Physics

Project Description: Exploring the Magic of Physics

Due Date: 2017.06.05 1700
(Absolutely no late projects will be accepted without pre-arranged consent of the instructors.)

Additional Information: Please refer to the syllabus for further information.

Team Project Grading: 50% of course grade

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage of Project Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Project</td>
<td>50% of the project grade</td>
</tr>
<tr>
<td>Project Report</td>
<td>20% of the project grade</td>
</tr>
<tr>
<td>Project Summary</td>
<td>20% of the project grade</td>
</tr>
<tr>
<td>Administrative Tasks</td>
<td>10% of the project grade</td>
</tr>
</tbody>
</table>

If you determine that a regrade is necessary, the entire assignment will be regraded.

Timeline

- lec01: during the first week (2017.04.03), a brief overview of the project will be given during the introduction of the course.
- lec02: during the second week (2017.04.10), you must bring a list of project ideas for discussion.
- week03: during the third week (2017.04.17), you are highly encouraged to participate in an outreach opportunity (see opportunities below).
- lec04: during the fourth week (2017.04.24), your project idea must be chosen.
- lec05: during the fifth week (2017.05.01), your materials must be purchased.
- lec06: during the sixth week (2017.05.08), the first draft of summary is due.
- lec07: during the seventh week (2017.05.15), the first draft of memo is due.
- lec08: during the eighth week (2017.05.22), your project must be functional.
- lec09: during the ninth week (2017.05.29), your penultimate project summary and report are due.
- lec10: during the tenth week (2017.06.05), team project will be due. Absolutely no late projects will be accepted.
- week10: SEA Day presentation is on Wednesday (2017.06.07).
Family Science and Engineering Night Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, April 06, 2017</td>
<td>01</td>
<td>1830-2000</td>
<td>Chapman Hill Elementary</td>
<td>Salem</td>
</tr>
<tr>
<td>Tuesday, April 11, 2017</td>
<td>02</td>
<td>1830-2000</td>
<td>Clover Ridge</td>
<td>Albany</td>
</tr>
<tr>
<td>Thursday, April 13, 2017</td>
<td>02</td>
<td>1830-2000</td>
<td>Clear Lake</td>
<td>Keizer</td>
</tr>
<tr>
<td>Tuesday, April 18, 2017</td>
<td>03</td>
<td>1830-2000</td>
<td>Independence Elementary</td>
<td>Independence</td>
</tr>
<tr>
<td>Thursday, April 20, 2017</td>
<td>03</td>
<td>1830-2000</td>
<td>Jefferson Elementary</td>
<td>Jefferson</td>
</tr>
<tr>
<td>Tuesday, May 02, 2017</td>
<td>05</td>
<td>0900-1500</td>
<td>Discovery Days</td>
<td>OSU</td>
</tr>
<tr>
<td>Wednesday, May 03, 2017</td>
<td>05</td>
<td>0900-1500</td>
<td>Discovery Days</td>
<td>OSU</td>
</tr>
<tr>
<td>Thursday, May 11, 2017</td>
<td>06</td>
<td>1830-2000</td>
<td>Cascades Elementary</td>
<td>Lebanon</td>
</tr>
<tr>
<td>Thursday, May 18, 2017</td>
<td>07</td>
<td>1830-2000</td>
<td>Richmond Elementary</td>
<td>Salem</td>
</tr>
<tr>
<td>Thursday, June 01, 2017</td>
<td>09</td>
<td>1830-2000</td>
<td>Liberty Elementary</td>
<td>Albany</td>
</tr>
<tr>
<td>Wednesday, June 07, 2017</td>
<td>10</td>
<td>0900-1430</td>
<td>SEA Day</td>
<td>OSU</td>
</tr>
</tbody>
</table>

Physical Project: 50%

Hands-on development of modules targeted at demonstrating the wonders of the STEM fields to a K-20 audience. Students will design physics-based modules with the goal to increase the interest in STEM among K-20 students at Oregon State University and in the Willamette Valley area of Oregon. A layered approach that uses service learning to bring the excitement of physics from the university research laboratory to the primary and secondary school classroom will be used. Demonstration experiments will be showcased at one of the many outreach activities that are offered through the Precollege Programs at Oregon State University. These demonstrations will be offered for incorporation into undergraduate and graduate courses as supplemental learning or as laboratory exercises.

Honors Pedagogy: The hands-on demonstration modules will ignite interest in STEM fields for both the students in the course, for the K-12 students at outreach, and for the K-20 students that use the modules in the classroom. This multifaceted approach to experience the wonders of physics will foster an ongoing growth of each individual through the role as both a mentee and a mentor.
Further, the development of the demonstration modules will increase the understanding of a broad array of physics in its various venues.

Project Summary: 20%

A one-page, laminated summary to visually introduce the project to the public will be required.

Project Memorandum: 20%

In addition to the Project Summary, a Project Memo will be required. The Project Memo should be no longer than five (5) pages for sections 1-7 listed below, including figures. Please see the handout entitled “CBEE_Technical_Writing_Guidelines_2013.pdf” as a guide in writing your report and the handout entitled “CBEE414ReportTemplate.pdf” as an example of the expected professionalism. The project grade will include neatness and attention to formatting as given in the Technical Writing Guidelines. Also, note that the report must be typed, while any color figures must be printed in color. We understand that this report may be your first opportunity to experience technical writing, and we will take this generalization into consideration during the grading.

1. Abstract
2. Background
3. Materials and Methods
4. Results and Discussion
5. Conclusions

Administrative Tasks: 10%

Project Submission

A physical version of your report is due at the start of class on Monday, 2017.06.05, at 1700. Please email the final versions to the instructor.
TECHNICAL WRITING GUIDELINES
CHE 334 (where appropriate) and CBEE 414-416

Unacceptable basic mistakes:

- Misspelled words
- Lack of introduction for a figure/table/equation in the preceding text
- Lack of title and/or detailed caption on a figure or table
- Unreasonable number of significant figures reported in Abstract/Conclusions
- Decimal written without leading zero
- Incomplete web site reference (site, date accessed, comments if appropriate)

Writing

- PROOFREAD YOUR WORK BEFORE YOU SUBMIT IT.
- Don’t write in the first person.
- Avoid starting sentences with prepositions, thereby being more direct and avoiding commas.
- No figures, tables, equations, or footnotes in the abstract.
- Introduce figures, tables, equation, etc., in the preceding text.
- All figures need a title below, e.g. "Figure 1", and caption that explains the figure. Make the caption summarize the relevance to somebody who has not read the report, i.e. it can stand alone.
- Titles for figures, tables, equations, etc., should be capitalized in the text, e.g. “Equation 1”.
- Don’t regurgitate/retype detailed information that is provided in a cited reference, e.g. a standard operating procedure (SOP). Provide sufficient details, but use a proper citation.
- Spell names correctly. If unsure, find out.
- Spell correctly and use the correct word: spellcheck may indicate a word is correctly spelled even if it is the wrong word. Some examples from previous years: “Miss counting”, “out liar”, “descent data”, “asses”, “ingrate”, “verse”.

Calculations and Technical Stuff

- Do not use unusual terms without introducing them first.
- Abbreviations and acronyms need be defined either at first use or in an appendix with reference.
- Use good judgment in deciding how many significant figures to report, e.g. if you’re using a rotometer to measure flow, don’t report 5 significant figures.
- Embrace terms like "prototype", "testbed" and "benchtop system". For example, you might use a prototype gas absorption column to assess mass transfer properties, then "scale up" to an actual system design.

Formatting

- Never write a decimal without a leading zero to ensure it's not mistaken as an integer: 0.62, not .62.
- Never start a sentence with a number, instead use “Thirty mL were delivered using a pipette.”
- Always put a space between a number and its units. It's easier to read and avoids alphanumeric confusion, e.g. If I write 6 liters as 6l, it sure looks like the number 61.
- Indent titles and captions on tables and figures and consider using smaller font, e.g. 10 pt, to make them stand out from the surrounding text. Some even use italics.
- Figures and tables should be centered on the page.
• Use "Ca^{2+}", "Na^{+}", etc. to represent ions. Elemental sodium (not ionic) would be "Na", and explosive when added to water!
• One often sees "Enclosure" at the bottom of the page. Is that not from the old days, when you "enclosed" something in the envelope?
• Many struggle in Equation Editor without the ability to put in spaces between numbers and units, etc. Try hitting Ctrl+space bar to put in spaces, or convert the entire equation to text style, which allows spaces.
• Italicize variables, e.g. t_b. It makes them stand out better to the reader.

TECHNICAL REPORT GUIDELINES

• Abstract
• Background
• Materials and Methods
• Results and Discussion
• Acknowledgements
• Appendices

Some guidance about what these sections look like:

• No Cover Page.
• Abstract is a high-level summary and includes (1) objectives, (2) methods, and (3) results. The goal is 4-6 sentences. Emphasize content: settings, ranges, numbers, units. No references, equations, etc.
• Background should be shorter for CBEE 414 lab reports, with brief theoretical background, then broaden as you move to more open-ended labs and senior projects. Look for previous work on the subject, e.g. have others measured that mass transfer coefficient? How? What did they find? Use footnote references liberally.
• Materials and Methods provides details about what you did. It is written in past tense, a story of what was done, not in first person, not as instructions, and not as bullets. The level of detail should be sufficient to allow another worker to repeat your work without having you physically there. Include equipment, manufacturer, model, equipment schematics/pictures. Cite provided documents/SOP.
• Results and Discussion is the section in which you present data, calculations performed, error analysis performed, and what you observe and conclude (trends, issues, etc.). It is where you compare experimental results with theory (or manufacturer-supplied) information. Most plots will be in this section. If there is a design component to your lab, include it in this section.
• Acknowledgements are included to (1) thank those that helped you setup equipment, explained equipment, etc., but also to (2) provide a record of who helped you so that your readers might use that information, e.g. Jill knows how to run the gas chromatograph. Be succinct.
• Appendices are a location for supporting details. Sample calculations are required and must include assumptions, unit, etc., so the reader can follow and check your computations. They can be handwritten if legible. A spreadsheet printout is not enough. Other content might include copies of raw data, equipment calibration data, non-critical charts, etc.

1 Not necessary for CHE 334 reports.
Tornado Eddy Investigation

Abstract

The objective of this lab was to write a bunch of jibberish to provide students with a formatting template. Chemical engineering, bioengineering, and environmental engineering are “process engineering” disciplines. Good abstracts contain real content, such as 560 mL/min, 35 deg, and 67 percent yield. Ideal degreed graduates are technically strong, bring broad system perspectives to problem solving, and have the professional “soft skills” to make immediate contributions in the workplace. The senior lab sequence is the “capstone” opportunity to realize this ideal by integrating technical skills and developing professional soft skills to ensure workforce preparedness. The best conclusions are objective and numerical, such as operating conditions of 45 L/min at 32 deg C with expected costs of $4.55/lb.

Background

Insect exchange processes are often used in bug filtration, as they are effective at removing either positive or negative insects from water. An insect exchange column is a packed or fluidized bed filled with resin beads. Water flows through the column and most of the insects from the water enter the beads, but some of them pass in between the beads, which makes the exchange of insects non-ideal. Insectac 249 resin is a cation exchange resin, as it is being used to attract cationic Ca$^{2+}$ from the toxic waste stream. This means the resin is negatively charged, and needs to be regenerated with a solution that produces positively charged insects, in this case, salt water which contains Na$^+$ insects. The resin contains acidic styrene backbones which capture the cationic insects in a reversible process.

A curve of Ca$^{2+}$ concentration vs. time was obtained after a standard curve was made to determine how many drops from the low cost barium test kit from Aquarium Pharmaceuticals (API)\(^1\) bottle #2 would correspond to a certain concentration in solution. A standard curve works by preparing solutions with known concentrations and testing these concentrations using the kit to create a curve of number of drops from bottle #2 (obtained result) vs. concentration of Ca$^{2+}$ in solution (desired response). The standard curve can then be used for every test on the prototype and in the field, to quickly and accurately obtain a concentration from the test kit.

The barium concentration vs. time curve can be used to calculate the exchange capacity of the resin and, in later tests, the regeneration efficiency. The curves must be used to get the total amount of barium removed from the water, m. Seen in Equation 2, the volumetric flow rate of water, \dot{V}, is multiplied by the integral from t_{initial} to t_{final} of the total concentration of Ca$^{2+}$ absorbed by the resin as a function of time, C.

\[
m = \dot{V} \int_{t_{\text{initial}}}^{t_{\text{final}}} C \, dt \tag{2}
\]

\(^1\) http://aquariumpharm.com/Products/Product.aspx?ProductID=72 , date accessed: 11/26/10
A graphical trapezoid method was used to evaluate the integral and get the final solution in equivalents of Ca\(^{2+}\) per L, it must be noted that there are 2 equivalents per mole of barium, as the charge of the barium insect is +2. An initial exchange capacity was calculated for the virgin resin, and an adjusted exchange capacity was calculated once the resin was regenerated. The regenerated resin capacity was found by multiplying the virgin resin capacity by the regeneration efficiency, expressed in Equation 3.

\[
\text{Regeneration Efficiency} = \frac{\text{Ca}^{2+}\text{ejected during regeneration}}{\text{Ca}^{2+}\text{absorbed by virgin resin}} \times 100\% \tag{3}
\]

See Appendix A for the calculation of the exchange capacities and the regeneration efficiency.

Materials and Methods

Rosalie and Peter Johnson of Corvallis established the Linus Pauling Chair in Chemical Engineering to honor Oregon State University’s most famous graduate. Peter Johnson, former President and owner of Tekmax, Inc., a company which revolutionized battery manufacturing equipment, is a 1955 graduate of the College of Engineering.\(^2\) The Chair, also known as the Linus Pauling Distinguished Engineer or Linus Pauling Engineer (LPE), was originally designed to focus on the traditional “capstone” senior lab sequence in the former Department of Chemical Engineering. The focus is now extended to all the process engineering disciplines. The LPE is charged with establishing strong ties with industry, ensuring current and relevant laboratory experiences, and helping upperclass students develop skills in communication, teamwork, project management, and leadership.

Include details about lab procedures not sufficiently detailed in the SOP, problems you had, etc.

The bulk solution prepared to create the standard curve was used in the second day of testing to obtain the exchange capacity of the insectac 249 resin. The solution was pumped through a bathroom scale into the prototype insect exchange column. 45 mL of resin was rinsed and added to the column. The bed was fluidized as the solution was pumped through the resin, but for the creation of the Ca\(^{2+}\) concentration vs. time curve, the solution was pumped down through the column, as illustrated in the process flow diagram seen in Figure 1.

![Figure 1](Ref: http://www.generon.co.uk/acatalog/Chromatography.html)

\(^2\) Harding, P. Viscosity Measurement SOP, Spring, 2010.
A bathroom scale calibration curve was created to ensure that the 150 mL/min, used to calculate the breakthrough time, would be delivered to the resin. The bathroom scale used was a Dwyer brand with flowrates between 0 and 300 cc/min of water. Originally, values between 120 and 180 mL/min were chosen for the calibration, with three runs for each flowrate, however the bathroom scale values were so far away from the measure values the range was extended to 100 to 200 mL/min. The regeneration experiment was performed using a method similar to that used in the water softening experiment, however instead of using a 640 ppm Ca$^{2+}$ solution to fill the resin, a 6000 ppm Na$^+$ solution was used to eject the Ca$^{2+}$ from the resin. Twelve samples times were chosen and adjusted as the experiment progressed, with more than half of the samples taken at times less than 10 minutes, and the last sample taken at 45 minutes. The bulk exit solution was also tested to determine the regeneration efficiency.

Results and Discussion

The senior lab sequence has its roots in the former Department of Chemical Engineering. CHE 414 and 415 were taught in Winter and Spring and included 6 hours of lab time per week. The School has endeavored to incorporate the courses into the BIOE and ENVE curriculum, and this will be complete in 2008-2009. Recent development of the senior lab course sequence is shown chronologically in Fig. 1. In 2006-2007, CHE 414 and 415 were moved to Fall and Winter to enable CHE 416, an elective independent senior project course. Also that year, BIOE students took BIOE 414 in the Fall and BIOE 415 was developed and taught. No BIOE students enrolled in the optional CHE. In 2007-2008, the program transitioned in a new Linus Pauling Engineer and ENVE 414 was offered. Also, approximately 30 percent of BIOE students enrolled in the optional CHE 416.

Accommodating the academic calendars of the three disciplines required a reduction in weekly student lab time from 6 to 3 hours. The expected relationship between coughing rate, y, and length of canine, x, is

$$y = Fe^{-\frac{Bx}{z}}$$

(1)

where F is a pre-exponential constant, B is vitamin B concentration and z is the height of an average trapeze artist. 3

The 2008-2009 brings the challenge of the dramatic enrollment increase shown in Fig. 1 and the first offering of ENVE 415. The result, shown on the right in Fig. 1, is the delivery of the senior lab sequence uniformly across the process engineering disciplines. CBEE 416 is expected to drawn approximately of the students that take the 415 courses. In 2007-2008, 414 and 415 were required for CHEs, 414 and 415 for BIOEs, and only 414 for ENVEs. CHE 416 is ostensibly an elective for all disciplines. In 2008-2009, 414 and 415 is required for all disciplines and CHE 416 will be an elective. The content of 414 is essentially

identical for all three disciplines, 415 has discipline-specific labs, and 416 consists of senior projects with potentially cross-discipline teams of 2 to 4 students. Tremendous labor and struggling with the lab equipment resulted in the data shown in

\[y = -0.29x + 1.71\]

\[y = -0.25x + 2.03\]

\[y = -0.135x + 2.20\]

Figure 1. (a) Data for \(y\) and \(x\) plotted for various values of \(z\) and (b) a comparison of slopes for the 3 cases investigate. The log plot slope yields the vitamin B concentration. The slopes were shown to be significantly at the 90% confidence level, but the instructor ran out of time and did not include error bars.

The slope changed as predicted by the Snirenhoffer equation. Improvements to the lab might include advice on how to legally change my name to something less embarrassing. My whole life I have been forced to repeat and spell it. I really feel that this has affected me psychologically.

This was perhaps the worst lab I have ever done in my academic career, primarily due to the fact that there was no lab time. I simply typed in this entire report and filled it with jibberish. Some might think nobody will notice, but I know that …… Harding reads every word.

Acknowledgments

The author acknowledges his elementary teacher for providing truly foundational instruction in addition and subtraction. Jenny Burninbalm was instrumental with guidance on use of the RT-345 dog scratching device.