More Data Representation
(filling in some gaps)

January 18, 2013

1/14

Outline

Some more comments on integers
Carry out vs. overflow
Identifying negative integers

Representing characters and strings
ASCII encoding
Strings in MIPS and endianness

Carry out vs. overflow

Carry out: carry after most significant bit = discard, no error
Overflow: result is out of representable range = error!

Carry out # overflow!

Carry out is a normal part of signed integer addition

Will get a carry out when adding:

e two negative numbers
e a negative and a positive, result is positive

Just ignore it!

14

Identifying negative integers, binary
Assume 16-bit, byte-addressable signed integers

Big endian
e 0101 1010 0000 1100 = positive
e 1000 0110 1001 0101 = negative

Little endian
e 0000 1100 0101 1010 = positive
e 1001 0101 1000 0110 = negative

Sign determined by most significant bit

/14

Identifying negative numbers, hex

Can you easily tell if a signed integer written in hex is negative?

e if most significant digit is 0—7 = positive
e if most significant digit is 8—F = negative

Big endian

e 0x5A0C = positive
e 0x8695 = negative

0x0B30 = positive
0xC110 = negative

Little endian
e 0x0C5A = positive
e 0x9586 = negative

0x300B = positive
0x10C1 = negative

Outline

Representing characters and strings
ASCII encoding
Strings in MIPS and endianness

/14

Representing characters

What is a character?
e letter, digit, symbols, newline, null, ...
e all keyboard input (even “numbers”)

Like all data, characters are encoded as binary numbers

Subset of ASCII encoding (7 bits, 0x00—0x7F):

Character(s) | Hex representation

\0’ 0x00

“\n’ 0x0A
‘0-'9 0x30—0x39
‘A7 0x41—0x5A

‘a-7 0x61—0x7A

ASCII encoding

Character(s) | Hex representation
0’ 0x00
‘\n’ 0x0A
‘0-9’ 0x30—0x39
‘AN—-Z 0x41—0x5A
‘a—'z’ 0x61—0x7A

Note that ‘1’ = 0x31, not 0x01!

Some patterns we can exploit:
e uppercase to lowercase: add 0x20
¢ lowercase to uppercase: subtract 0x20
e character digit to numeric value: subtract 0x30

14

Complete ASCII table

ASCII| Code Chart

0 1 2 3 11 12 13 14 15
o[NuUL|sOH|sTX|ETX|EOT|[ENQ|ACK|BEL| BS |HT [LF [vT | FF [CR| SO sI
1|pLE|pc1|pc2|pe3|pca[nak|syn[ETB|caN| EM [suB|Esc| Fs | Gs | Rs [us
2lse| v "l #]s|[w|&|l |]l [*]+].1-1.11/
sfol1]l23]4a]s5]6]7[8]o]: <|=]>1>»
JeolalB|lc|pleE|lF]lcg|H|[I])J]xk]L]IM|[N]O
sf Pl Q| R|ISs|T|JUlVIWwW][X]Y]lZ]T]\N][1]~]_
6| ° a b C d e f [¢] h i j k | m| n 0
71 p q r S t u v | wi| x y z { | } ~ |DEL
To encode character: 0x(row)(col)

Examples
‘Q = 0x51 ‘K’ = 0x6B “? = 0x3F

Representing strings

What is a string? In MIPS:
e sequence of ASCII-encoded characters (padded to 8-bits)
e ends in ‘\0’ (null-terminated)
e padded with 0x00 bytes to make an even number of words

. . Character(s) | Hex

Examples (big endian) "0 000

e “‘Cat’ = “\n’ 0x0A
0x43617400 ‘09’ 0x30—0x39
e “Cats?” = ‘AN-Z 0x41—0x5A
0x43617473 3F000000 ‘a7’ 0x61—0x7A

10/14

Numbers as strings

When you type a number as input to a program, it is a string!

e if you want to use it as a number, you must convert it
e we’'ll do this later in the course

Examples

e “5612” = 0x35313200
e “1024” = 0x31303234 00000000

11/14

Little-endian strings in MIPS

Endianness refers only to the order of bytes within a word

e makes multi-word little-endian strings confusing ...

Little-endian strings

e order of words is same as big endian
e order of bytes within words is reversed

String “Cat” “Cats?”
Big endian 0x43617400 | 0x43617473 3F000000
Little endian | 0x00746143 | 0x73746143 0000003F

12/14

In-class exercises (part 1)

Assume 32-bit (byte addressable) signed integers

For each number, is it positive or negative ...
o if big-endian?
o if little-endian?

Numbers
1. 0x12345678 3. 0xCAFEBABE
2. 0x456789AB 4. 0xCAFEDOOD

13/14

In-class exercises (part 2)

ASCII Code Chart

11

14

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

SO

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

RS

Y%

*

+

=

NJO U D W IN = O
Aol@|=oS

o |lo |O|> |-]|--

S|oT|m|m N

nlo|lun|lo|w|#®

~la|H]|TO]|d |-

clo|Cc|m|uv

<|=w|<|Tm|o|

slels|o|~

X |T|IX|xT]|oo |~

< |—|<|—]o]|—

N —[N[—]--

~|x|— ||

In hex, write the string “Kaplow” as a big-endian and a

little-endian, null-terminated ASCII string, as in MIPS
e 0x4B61706C 6F770000
e 0x6C70614B 0000776F

14/14

	Some more comments on integers
	Carry out vs. overflow
	Identifying negative integers

	Representing characters and strings
	ASCII encoding
	Strings in MIPS and endianness

