
More Data Representation
(filling in some gaps)

January 18, 2013

1 / 14



Outline

Some more comments on integers
Carry out vs. overflow
Identifying negative integers

Representing characters and strings
ASCII encoding
Strings in MIPS and endianness

2 / 14



Carry out vs. overflow

Carry out: carry after most significant bit⇒ discard, no error
Overflow: result is out of representable range⇒ error!

Carry out 6= overflow!

Carry out is a normal part of signed integer addition

Will get a carry out when adding:
• two negative numbers
• a negative and a positive, result is positive

Just ignore it!

3 / 14



Identifying negative integers, binary

Assume 16-bit, byte-addressable signed integers

Big endian
• 0101 1010 0000 1100⇒ positive
• 1000 0110 1001 0101⇒ negative

Little endian
• 0000 1100 0101 1010⇒ positive
• 1001 0101 1000 0110⇒ negative

Sign determined by most significant bit

4 / 14



Identifying negative numbers, hex

Can you easily tell if a signed integer written in hex is negative?

• if most significant digit is 0–7⇒ positive
• if most significant digit is 8–F⇒ negative

Big endian
• 0x5A0C⇒ positive
• 0x8695⇒ negative

• 0x0B30⇒ positive
• 0xC110⇒ negative

Little endian
• 0x0C5A⇒ positive
• 0x9586⇒ negative

• 0x300B⇒ positive
• 0x10C1⇒ negative

5 / 14



Outline

Some more comments on integers
Carry out vs. overflow
Identifying negative integers

Representing characters and strings
ASCII encoding
Strings in MIPS and endianness

6 / 14



Representing characters

What is a character?
• letter, digit, symbols, newline, null, . . .
• all keyboard input (even “numbers”)

Like all data, characters are encoded as binary numbers

Subset of ASCII encoding (7 bits, 0x00–0x7F):

Character(s) Hex representation
‘\0’ 0x00
‘\n’ 0x0A

‘0’–‘9’ 0x30–0x39
‘A’–‘Z’ 0x41–0x5A
‘a’–‘z’ 0x61–0x7A

7 / 14



ASCII encoding

Character(s) Hex representation
‘\0’ 0x00
‘\n’ 0x0A

‘0’–‘9’ 0x30–0x39
‘A’–‘Z’ 0x41–0x5A
‘a’–‘z’ 0x61–0x7A

Note that ‘1’ = 0x31, not 0x01!

Some patterns we can exploit:
• uppercase to lowercase: add 0x20

• lowercase to uppercase: subtract 0x20
• character digit to numeric value: subtract 0x30

8 / 14



Complete ASCII table

To encode character: 0x(row)(col)

Examples
‘Q’⇒ 0x51 ‘k’⇒ 0x6B ‘?’ ⇒ 0x3F

9 / 14



Representing strings

What is a string? In MIPS:
• sequence of ASCII-encoded characters (padded to 8-bits)
• ends in ‘\0’ (null-terminated)
• padded with 0x00 bytes to make an even number of words

Examples (big endian)
• “Cat”⇒
0x43617400

• “Cats?” ⇒
0x43617473 3F000000

Character(s) Hex
‘\0’ 0x00
‘\n’ 0x0A

‘0’–‘9’ 0x30–0x39
‘A’–‘Z’ 0x41–0x5A
‘a’–‘z’ 0x61–0x7A

10 / 14



Numbers as strings

When you type a number as input to a program, it is a string!
• if you want to use it as a number, you must convert it
• we’ll do this later in the course

Examples
• “512” ⇒ 0x35313200

• “1024”⇒ 0x31303234 00000000

11 / 14



Little-endian strings in MIPS

Endianness refers only to the order of bytes within a word
• makes multi-word little-endian strings confusing . . .

Little-endian strings
• order of words is same as big endian
• order of bytes within words is reversed

String “Cat” “Cats?”
Big endian 0x43617400 0x43617473 3F000000
Little endian 0x00746143 0x73746143 0000003F

12 / 14



In-class exercises (part 1)

Assume 32-bit (byte addressable) signed integers

For each number, is it positive or negative . . .
• if big-endian?
• if little-endian?

Numbers
1. 0x12345678

2. 0x456789AB

3. 0xCAFEBABE

4. 0xCAFED00D

13 / 14



In-class exercises (part 2)

In hex, write the string “Kaplow” as a big-endian and a
little-endian, null-terminated ASCII string, as in MIPS
• 0x4B61706C 6F770000

• 0x6C70614B 0000776F

14 / 14


	Some more comments on integers
	Carry out vs. overflow
	Identifying negative integers

	Representing characters and strings
	ASCII encoding
	Strings in MIPS and endianness


