More Data Representation
(filling in some gaps)
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Carry out vs. overflow

Carry out: carry after most significant bit = discard, no error
Overflow: result is out of representable range = error!

Carry out # overflow!

Carry out is a normal part of signed integer addition

Will get a carry out when adding:

e two negative numbers
e a negative and a positive, result is positive

Just ignore it!
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Identifying negative integers, binary
Assume 16-bit, byte-addressable signed integers

Big endian
e 0101 1010 0000 1100 = positive
e 1000 0110 1001 0101 = negative

Little endian
e 0000 1100 0101 1010 = positive
e 1001 0101 1000 0110 = negative

Sign determined by most significant bit
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Identifying negative numbers, hex

Can you easily tell if a signed integer written in hex is negative?

e if most significant digit is 0—7 = positive
e if most significant digit is 8—F = negative

Big endian

e 0x5A0C = positive
e 0x8695 = negative

0x0B30 = positive
0xC110 = negative

Little endian
e 0x0C5A = positive
e 0x9586 = negative

0x300B = positive
0x10C1 = negative
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Representing characters

What is a character?
e letter, digit, symbols, newline, null, ...
e all keyboard input (even “numbers”)

Like all data, characters are encoded as binary numbers

Subset of ASCII encoding (7 bits, 0x00—0x7F):

Character(s) | Hex representation

\0’ 0x00

“\n’ 0x0A
‘0-'9 0x30—0x39
‘A7 0x41—0x5A

‘a-7 0x61—0x7A




ASCII encoding

Character(s) | Hex representation
0’ 0x00
‘\n’ 0x0A
‘0-9’ 0x30—0x39
‘AN—-Z 0x41—0x5A
‘a—'z’ 0x61—0x7A

Note that ‘1’ = 0x31, not 0x01!

Some patterns we can exploit:
e uppercase to lowercase: add 0x20
¢ lowercase to uppercase: subtract 0x20
e character digit to numeric value: subtract 0x30
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Complete ASCII table

ASCII| Code Chart

0 1 2 3 11 12 13 14 15
o[NuUL|sOH|sTX|ETX|EOT|[ENQ|ACK|BEL| BS |HT [ LF [ vT | FF [ CR| SO sI
1|pLE|pc1|pc2|pe3|pca[nak|syn[ETB|caN| EM [suB|Esc| Fs | Gs | Rs [ us
2lse| v "l #]s|[w|&|l | ]l [*]+].1-1.11/
sfol1]l23]4a]s5]6]7[8]o]: <|=]>1>»
JeolalB|lc|pleE|lF]lcg|H|[I])J]xk]L]IM|[N]O
sf Pl Q| R|ISs|T|JUlVIWwW][X]Y]lZ]T]\N][1]~]_
6| ° a b C d e f [¢] h i j k | m| n 0
71 p q r S t u v | wi| x y z { | } ~ |DEL
To encode character: 0x(row)(col)

Examples
‘Q = 0x51 ‘K’ = 0x6B “? = 0x3F




Representing strings

What is a string? In MIPS:
e sequence of ASCII-encoded characters (padded to 8-bits)
e ends in ‘\0’ (null-terminated)
e padded with 0x00 bytes to make an even number of words

. . Character(s) | Hex

Examples (big endian) "0 000

e “‘Cat’ = “\n’ 0x0A
0x43617400 ‘09’ 0x30—0x39
e “Cats?” = ‘AN-Z 0x41—0x5A
0x43617473 3F000000 ‘a7’ 0x61—0x7A

10/14



Numbers as strings

When you type a number as input to a program, it is a string!

e if you want to use it as a number, you must convert it
e we’'ll do this later in the course

Examples

e “5612” = 0x35313200
e “1024” = 0x31303234 00000000
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Little-endian strings in MIPS

Endianness refers only to the order of bytes within a word

e makes multi-word little-endian strings confusing ...

Little-endian strings

e order of words is same as big endian
e order of bytes within words is reversed

String “Cat” “Cats?”
Big endian 0x43617400 | 0x43617473 3F000000
Little endian | 0x00746143 | 0x73746143 0000003F
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In-class exercises (part 1)

Assume 32-bit (byte addressable) signed integers

For each number, is it positive or negative ...
o if big-endian?
o if little-endian?

Numbers
1. 0x12345678 3. 0xCAFEBABE
2. 0x456789AB 4. 0xCAFEDOOD

13/14



In-class exercises (part 2)

ASCII Code Chart

11

14
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In hex, write the string “Kaplow” as a big-endian and a

little-endian, null-terminated ASCII string, as in MIPS
e 0x4B61706C 6F770000
e 0x6C70614B 0000776F
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