
Implementing Algorithms in MIPS Assembly
(Part 1)

January 28–30, 2013

1 / 18

Outline

Effective documentation

Arithmetic and logical expressions
Compositionality
Sequentializing complex expressions
Bitwise vs. logical operations

2 / 18

Documenting your code

Author: your name
Date: current date
Description: high-level description of your program

.data

(constant and variable definitions)

.text

Section 1: what this part does
Pseudocode:
(algorithm in pseudocode)
Register mappings:
(mapping from pseudocode variables to registers)

Inline comments should relate to the pseudocode description

(MARS demo: Circle.asm)

3 / 18

Just to reiterate . . . (required from here on out)

Once at top of file:

Header block
1. author name
2. date of current version
3. high-level description of your program

Once for each section:

Section block
1. section name
2. description of algorithm in pseudocode
3. mapping from pseudocode variables to registers

. . . and inline comments that relate to pseudocode

4 / 18

Outline

Effective documentation

Arithmetic and logical expressions
Compositionality
Sequentializing complex expressions
Bitwise vs. logical operations

5 / 18

Compositionality

Main challenge
• math expressions are compositional
• assembly instructions are not compositional

Compositionality in math:
• use expressions as arguments to other expressions
• example: a * (b + 3)

Non-compositionality in assembly:
• can’t use instructions as arguments to other instructions
• not valid MIPS: mult $t0 (addi $t1 3)

6 / 18

Significance of compositionality (PL aside)

Compositionality is extremely powerful and useful

• leads to high expressiveness
• can do more with less code

• leads to nice semantics
• to understand whole: understand parts + how combined

• promotes modularity and reuse
• extract recurring subexpressions

Pulpit: less compositional ⇒ more compositional
assembly ⇒ imperative (C, Java) ⇒ functional (Haskell)

7 / 18

Sequentializing expressions

Goal
Find a sequence of assembly instructions that implements the
pseudocode expression

Limited by available instructions:
• in math, add any two expressions
• in MIPS, add two registers, or a register and a constant

• not all instructions have immediate variants
• can use li to load constant into register

Limited by available registers:
• might need to swap variables in/out of memory
• (usually not a problem for us, but a real problem in practice)

8 / 18

Finding the right sequence of instructions

Strategy 1: Decompose expression
1. separate expression into subexpressions

• respect grouping and operator precedence!

2. translate each subexpression and save results
3. combine results of subexpressions

(assume C-like operator precedence in pseudocode)

Example
Pseudocode:
d = (a+b) * (c+4)
Register mappings:
a: t0, b: t1, c: t2, d: t3

tmp1 = a+b
tmp2 = c+4
d = tmp1 * tmp2

add $t4, $t0, $t1 # tmp1 = a+b
addi $t5, $t2, 4 # tmp2 = c+4
mul $t3, $t4, $t5 # d = tmp1 * tmp2

9 / 18

Finding the right sequence of instructions

Strategy 2: Parse and translate
1. parse expression into abstract syntax tree
2. traverse tree in post-order
3. store subtree results in temp registers

This is essentially what a compiler does!

Example
Pseudocode:
c = a + 3*(b+2)
Register mappings:
a: t0, b: t1, c: t2

3 +

*

b 2

+

a

tmp1

tmp2

d

addi $t3, $t1, 2 # tmp1 = b+2
mul $t4, $t3, 3 # tmp2 = 3*tmp1
add $t2, $t0, $t4 # c = a + tmp2

10 / 18

Optimizing register usage

Can often use fewer registers by accumulating results

Pseudocode:
c = a + 3*(b+2)
Register mappings:
a: $t0, b: $t1, c: $t2
tmp1: $t3, tmp2: $t4

tmp1 = b+2
tmp2 = 3*tmp1
c = a + tmp2

addi $t3, $t1, 2
mul $t4, $t3, 3
add $t2, $t0, $t4

⇒
c = b+2
c = 3*c
c = a + c

addi $t2, $t1, 2
mul $t2, $t2, 3
add $t2, $t0, $t2

11 / 18

Exercise

Pseudocode:
d = a - 3 * (b + c + 8)
Register mappings:
a: t0, b: t1, c: t2, d: t3

addi $t3, $t2, 8 # d = b + c + 8
add $t3, $t1, $t3
li $t4, 3 # d = 3 * d
mul $t3, $t4, $t3
sub $t3, $t0, $t3 # d = a - d

12 / 18

Logical expressions

In high-level languages, used in conditions of control structures
• branches (if-statements)
• loops (while, for)

Logical expressions
• values: True, False
• boolean operators: not (!), and (&&), or (||)
• relational operators: ==, !=, >, >=, <, <=

In MIPS:
• conceptually, False = 0, True = 1

• non-relational logical operations are bitwise, not boolean

13 / 18

Bitwise logic operations

and $t1, $t2, $t3 # $t1 = $t2 & $t3 (bitwise and)
or $t1, $t2, $t3 # $t1 = $t2 | $t3 (bitwise or)
xor $t1, $t2, $t3 # $t1 = $t2 ^ $t3 (bitwise xor)

Example: 0110 ‘op’ 0011

1 0 1 0
and 0 0 1 1

0 0 1 0
1 iff both are 1

1 0 1 0
or 0 0 1 1

1 0 1 1
1 iff either is 1

1 0 1 0
xor 0 0 1 1

1 0 0 1
1 iff exactly one 1

Immediate variants
andi $t1, $t2, 0x0F # $t1 = $t2 & 0x0F (bitwise and)
ori $t1, $t2, 0xF0 # $t1 = $t2 | 0xF0 (bitwise or)
xori $t1, $t2, 0xFF # $t1 = $t2 ^ 0xFF (bitwise xor)

14 / 18

Bitwise logic vs. boolean logic

For and, or, xor:
• equivalent when False = 0 and True = 1

• not equivalent when False = 0 and True 6= 0! (as in C)

Careful: MARS provides a macro instruction for bitwise not

• this is not equivalent to logical not
• inverts every bit, so “not True”⇒ 0xFFFFFFFE

How can we implement logical not?
xori $t1, $t2, 1 # $t1 = not $t2 (logical not)

15 / 18

Relational operations

Logical expressions
• values: True, False
• boolean operators: not (!), and (&&), or (||)
• relational operators: ==, !=, >, >=, <, <=

seq $t1, $t2, $t3 # $t1 = $t2 == $t3 ? 1 : 0
sne $t1, $t2, $t3 # $t1 = $t2 != $t3 ? 1 : 0
sge $t1, $t2, $t3 # $t1 = $t2 >= $t3 ? 1 : 0
sgt $t1, $t2, $t3 # $t1 = $t2 > $t3 ? 1 : 0
sle $t1, $t2, $t3 # $t1 = $t2 <= $t3 ? 1 : 0
slt $t1, $t2, $t3 # $t1 = $t2 < $t3 ? 1 : 0

slti $t1, $t2, 42 # $t1 = $t2 < 42 ? 1 : 0

(MARS provides macro versions of many of these instructions
that take immediate arguments)

16 / 18

Exercise

Pseudocode:
c = (a < b) || ((a+b) == 10)
Register mappings:
a: t0, b: t1, c: t2

add $t3, $t0, $t1 # tmp = a+b
li $t4, 10 # tmp = tmp == 10
seq $t3, $t3, $t4
slt $t2, $t0, $t1 # c = a < b
or $t2, $t2, $t3 # c = c | tmp

17 / 18

Exercise

Pseudocode:
c = (a < b) && ((a+b) % 3) == 2
Register mappings:
a: t0, b: t1, c: t2

tmp1: t3, tmp2: t4

add $t3, $t0, $t1 # tmp1 = a+b
li $t4, 3 # tmp1 = tmp1 % 3
div $t3, $t4
mfhi $t3
seq $t3, $t3, 2 # tmp1 = tmp1 == 2
slt $t4, $t0, $t1 # tmp2 = a < b
and $t2, $t3, $t4 # c = tmp2 & tmp1

18 / 18

	Effective documentation
	Arithmetic and logical expressions
	Compositionality
	Sequentializing complex expressions
	Bitwise vs. logical operations

