Implementing Algorithms in MIPS Assembly
(Part 1)
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Documenting your code

# Author: your name
# Date: current date
# Description: high-level description of your program
.data
(constant and variable definitions)
.text

# Section 1: what this part does
# Pseudocode:

# (algorithm in pseudocode)
# Register mappings:
# (mapping from pseudocode variables to registers)

Inline comments should relate to the pseudocode description

(MARS demo: Circle.asm)
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Just to reiterate ... (required from here on out)

Once at top of file:

Header block
1. author name
2. date of current version
3. high-level description of your program

Once for each section:

Section block
1. section name
2. description of algorithm in pseudocode
3. mapping from pseudocode variables to registers

...and inline comments that relate to pseudocode
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Compositionality

Main challenge

e math expressions are compositional
e assembly instructions are not compositional

Compositionality in math:
e use expressions as arguments to other expressions
e example:a * (b + 3)

Non-compositionality in assembly:
e can’t use instructions as arguments to other instructions
e not valid MIPS: mult $t0 (addi $t1 3)
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Significance of compositionality (PL aside)

Compositionality is extremely powerful and useful

e |leads to high expressiveness
e can do more with less code

e leads to nice semantics
¢ to understand whole: understand parts + how combined

e promotes modularity and reuse
e extract recurring subexpressions

Pulpit:  less compositional = more compositional
assembly = imperative (C, Java) = functional (Haskell) }




Sequentializing expressions

Goal

Find a sequence of assembly instructions that implements the
pseudocode expression

Limited by available instructions:

¢ in math, add any two expressions
¢ in MIPS, add two registers, or a register and a constant

e not all instructions have immediate variants
e can use 1i to load constant into register

Limited by available registers:
e might need to swap variables in/out of memory
e (usually not a problem for us, but a real problem in practice)
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Finding the right sequence of instructions

Strategy 1: Decompose expression

1. separate expression into subexpressions
e respect grouping and operator precedence!

2. translate each subexpression and save results

3. combine results

of subexpressions

(assume C-like operator precedence in pseudocode)

Example

# Pseudocode:

# d = (a+b) * (c+4)
# Register mappings:
# a: t0, b: tl1, c:
add $t4, $t0, S$t1

addi $t5, $t2, 4
mul $t3, $t4, S$t5

t2, d: t3

# tmpl = a+b
# tmp2 = c+4

# d = tmpl * tmp2

tmpl a+b
tmp2 c+4
d = tmpl * tmp2
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Finding the right sequence of instructions

Strategy 2: Parse and translate
1. parse expression into abstract syntax tree
2. traverse tree in post-order
3. store subtree results in temp registers

This is essentially what a compiler does!

Example

# Pseudocode:
# c = a + 3% (b+2)

# Register mappings:
# a: t0, b: t1, c:

addi $t3, $tl1, 2
mul $t4, $t3, 3
add $t2, $t0, $t4

t2
# tmpl = b+2
# tmp2 = 3xtmpl

# c=a+ tmp2

v
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Optimizing register usage

Can often use fewer registers by accumulating results

# Pseudocode:

# c = a + 3% (b+2)

# Register mappings:

# a: $t0, b: $tl, c: $t2
# tmpl: $t3, tmp2: $t4

# tmpl = b+2 # c = b+2

# tmp2 = 3xtmpl # c = 3*xc

# c=a+ tmp2 ::i>> #c=a+c

addi $t3, $tl, 2 addi $t2, $t1, 2
mul $t4, $t3, 3 mul $t2, $t2, 3
add $t2, $t0, $t4 add $t2, $t0, S$t2
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Exercise

# Pseudocode:

# d=a-3x* (b+c+ 8)

# Register mappings:

# a: t0, b: tl, c: t2, d: t3

addi $t3, $t2, 8 #d=b+c+ 8
add $t3, $t1, $t3

1i $t4, 3 #d=3=xd
mul $t3, $t4, $t3

sub $t3, $t0, $t3 # d

a-d
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Logical expressions

In high-level languages, used in conditions of control structures

e branches (if-statements)
e loops (while, for)

Logical expressions
e values: True, False
e boolean operators: not (!), and (s&), or (11)
e relational operators: ==, =, >, >=, <, <=

In MIPS:

e conceptually, False = 0, True = 1
¢ non-relational logical operations are bitwise, not boolean
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Bitwise logic operations

$t2 & $t3 (bitwise and)
$t2 | $t3 (bitwise or)
$t2 ~ $t3 (bitwise xor)

and $tl, $t2, $t3 # St1l
or $tl, $t2, 5t3 # St1
xor S$tl, $t2, $t3 # Stl

Example: 0110 ‘op’ 0011

1010 1010 1010
and 0011 or 0011 xor 0011
0010 1011 1001
1 iff both are 1 1 iff either is 1 1 iff exactly one 1

Immediate variants

andi $tl1, $t2, OxOF # Stl
ori $tl, $t2, OxFO # Stl
xori $tl, $t2, OxFF # $tl

$t2 & OxOF (bitwise and)
$t2 | 0xFO (bitwise or)
$t2 ~ OxFF (bitwise xor)
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Bitwise logic vs. boolean logic

For and, or, xor:

e equivalent when False = 0 and True = 1
¢ not equivalent when False = 0 and True # 0! (as in C)

Careful: MARS provides a macro instruction for bitwise not

e this is not equivalent to logical not
e inverts every bit, so “not True” = 0xFFFFFFFE

How can we implement logical not?
xori $tl, $t2, 1 # $tl = not $t2 (logical not)
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Relational operations

Logical expressions

e values: True, False
¢ boolean operators: not (!), and (s&), or (1 1)

e relational operators: ==, 1=, >, >=, <, <=

seq $t1, $t2, $t3 # Stl = $t2 == $t3 2 1 : 0
sne $tl, $t2, $t3 # $t1 = $t2 = $t3 21 : 0
sge $tl1, $t2, $t3 # Stl = $t2 >=$t3 2 1 : 0
sgt $tl, $t2, $t3 # $tl = $t2 > $t3 21 : 0
sle $tl1l, $t2, $t3 # Stl = $t2 <= 3%$t3 2 1 : 0
slt $tl1, $t2, $t3 # 5tl = $t2 < $t3 2?21 : 0
slti $t1, $t2, 42 # $tl = $t2 < 4221 : 0

(MARS provides macro versions of many of these instructions
that take immediate arguments)
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Exercise

# Pseudocode:

# c= (a<b) || ((ath) == 10)
# Register mappings:

# a: t0, b: tl1, c: t2

add $t3, $t0, $tl1 # tmp = a+b

1i $t4, 10 # tmp = tmp == 10
seq $t3, $t3, S$t4
slt $t2, $t0, s$tl

# <b
or $t2, $t2, $t3 #

| tmp

(o Je]
nn
o p
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Exerci

se

# Pseudocode:
c = (a<Db) && ((at+b) % 3) == 2

#

# Register mappings:
: t2

#

#

add
1i
div
mfhi
seq
slt
and

a: t0, b: tl1,

tmpl: t3, tmp2:

$t3l
st4,
$t3,
$t3

$t3,
$t4l
$t2,

$to,
3
st4

$t3,
$to,
$t3,

$tl

$tl
St4

t4

# tmpl a+b
# tmpl = tmpl % 3

# tmpl = tmpl ==
# tmp2 = a <b
# ¢ = tmp2 & tmpl
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