Implementing Algorithms in MIPS Assembly
(Part 1)

January 28-30, 2013

1/18

Outline

Effective documentation

Arithmetic and logical expressions
Compositionality
Sequentializing complex expressions
Bitwise vs. logical operations

/18

Documenting your code

Author: your name
Date: current date
Description: high-level description of your program
.data
(constant and variable definitions)
.text

Section 1: what this part does
Pseudocode:

(algorithm in pseudocode)
Register mappings:
(mapping from pseudocode variables to registers)

Inline comments should relate to the pseudocode description

(MARS demo: Circle.asm)

3/18

Just to reiterate ... (required from here on out)

Once at top of file:

Header block
1. author name
2. date of current version
3. high-level description of your program

Once for each section:

Section block
1. section name
2. description of algorithm in pseudocode
3. mapping from pseudocode variables to registers

...and inline comments that relate to pseudocode

Outline

Arithmetic and logical expressions
Compositionality
Sequentializing complex expressions
Bitwise vs. logical operations

/18

Compositionality

Main challenge

e math expressions are compositional
e assembly instructions are not compositional

Compositionality in math:
e use expressions as arguments to other expressions
e example:a * (b + 3)

Non-compositionality in assembly:
e can’t use instructions as arguments to other instructions
e not valid MIPS: mult $t0 (addi $t1 3)

18

Significance of compositionality (PL aside)

Compositionality is extremely powerful and useful

e |leads to high expressiveness
e can do more with less code

e leads to nice semantics
¢ to understand whole: understand parts + how combined

e promotes modularity and reuse
e extract recurring subexpressions

Pulpit: less compositional = more compositional
assembly = imperative (C, Java) = functional (Haskell) }

Sequentializing expressions

Goal

Find a sequence of assembly instructions that implements the
pseudocode expression

Limited by available instructions:

¢ in math, add any two expressions
¢ in MIPS, add two registers, or a register and a constant

e not all instructions have immediate variants
e can use 1i to load constant into register

Limited by available registers:
e might need to swap variables in/out of memory
e (usually not a problem for us, but a real problem in practice)

18

Finding the right sequence of instructions

Strategy 1: Decompose expression

1. separate expression into subexpressions
e respect grouping and operator precedence!

2. translate each subexpression and save results

3. combine results

of subexpressions

(assume C-like operator precedence in pseudocode)

Example

Pseudocode:

d = (a+b) * (c+4)
Register mappings:
a: t0, b: tl1, c:
add $t4, $t0, S$t1

addi $t5, $t2, 4
mul $t3, $t4, S$t5

t2, d: t3

tmpl = a+b
tmp2 = c+4

d = tmpl * tmp2

tmpl a+b
tmp2 c+4
d = tmpl * tmp2

/18

Finding the right sequence of instructions

Strategy 2: Parse and translate
1. parse expression into abstract syntax tree
2. traverse tree in post-order
3. store subtree results in temp registers

This is essentially what a compiler does!

Example

Pseudocode:
c = a + 3% (b+2)

Register mappings:
a: t0, b: t1, c:

addi $t3, $tl1, 2
mul $t4, $t3, 3
add $t2, $t0, $t4

t2
tmpl = b+2
tmp2 = 3xtmpl

c=a+ tmp2

v

10/18

Optimizing register usage

Can often use fewer registers by accumulating results

Pseudocode:

c = a + 3% (b+2)

Register mappings:

a: $t0, b: $tl, c: $t2
tmpl: $t3, tmp2: $t4

tmpl = b+2 # c = b+2

tmp2 = 3xtmpl # c = 3*xc

c=a+ tmp2 ::i>> #c=a+c

addi $t3, $tl, 2 addi $t2, $t1, 2
mul $t4, $t3, 3 mul $t2, $t2, 3
add $t2, $t0, $t4 add $t2, $t0, S$t2

11/18

Exercise

Pseudocode:

d=a-3x* (b+c+ 8)

Register mappings:

a: t0, b: tl, c: t2, d: t3

addi $t3, $t2, 8 #d=b+c+ 8
add $t3, $t1, $t3

1i $t4, 3 #d=3=xd
mul $t3, $t4, $t3

sub $t3, $t0, $t3 # d

a-d

12/18

Logical expressions

In high-level languages, used in conditions of control structures

e branches (if-statements)
e loops (while, for)

Logical expressions
e values: True, False
e boolean operators: not (!), and (s&), or (11)
e relational operators: ==, =, >, >=, <, <=

In MIPS:

e conceptually, False = 0, True = 1
¢ non-relational logical operations are bitwise, not boolean

13/18

Bitwise logic operations

$t2 & $t3 (bitwise and)
$t2 | $t3 (bitwise or)
$t2 ~ $t3 (bitwise xor)

and $tl, $t2, $t3 # St1l
or $tl, $t2, 5t3 # St1
xor S$tl, $t2, $t3 # Stl

Example: 0110 ‘op’ 0011

1010 1010 1010
and 0011 or 0011 xor 0011
0010 1011 1001
1 iff both are 1 1 iff either is 1 1 iff exactly one 1

Immediate variants

andi $tl1, $t2, OxOF # Stl
ori $tl, $t2, OxFO # Stl
xori $tl, $t2, OxFF # $tl

$t2 & OxOF (bitwise and)
$t2 | 0xFO (bitwise or)
$t2 ~ OxFF (bitwise xor)

14/18

Bitwise logic vs. boolean logic

For and, or, xor:

e equivalent when False = 0 and True = 1
¢ not equivalent when False = 0 and True # 0! (as in C)

Careful: MARS provides a macro instruction for bitwise not

e this is not equivalent to logical not
e inverts every bit, so “not True” = 0xFFFFFFFE

How can we implement logical not?
xori $tl, $t2, 1 # $tl = not $t2 (logical not)

15/18

Relational operations

Logical expressions

e values: True, False
¢ boolean operators: not (!), and (s&), or (1 1)

e relational operators: ==, 1=, >, >=, <, <=

seq $t1, $t2, $t3 # Stl = $t2 == $t3 2 1 : 0
sne $tl, $t2, $t3 # $t1 = $t2 = $t3 21 : 0
sge $tl1, $t2, $t3 # Stl = $t2 >=$t3 2 1 : 0
sgt $tl, $t2, $t3 # $tl = $t2 > $t3 21 : 0
sle $tl1l, $t2, $t3 # Stl = $t2 <= 3%$t3 2 1 : 0
slt $tl1, $t2, $t3 # 5tl = $t2 < $t3 2?21 : 0
slti $t1, $t2, 42 # $tl = $t2 < 4221 : 0

(MARS provides macro versions of many of these instructions
that take immediate arguments)

16/18

Exercise

Pseudocode:

c= (a<b) || ((ath) == 10)
Register mappings:

a: t0, b: tl1, c: t2

add $t3, $t0, $tl1 # tmp = a+b

1i $t4, 10 # tmp = tmp == 10
seq $t3, $t3, S$t4
slt $t2, $t0, s$tl

<b
or $t2, $t2, $t3 #

| tmp

(o Je]
nn
o p

17/18

Exerci

se

Pseudocode:
c = (a<Db) && ((at+b) % 3) == 2

#

Register mappings:
: t2

#

#

add
1i
div
mfhi
seq
slt
and

a: t0, b: tl1,

tmpl: t3, tmp2:

$t3l
st4,
$t3,
$t3

$t3,
$t4l
$t2,

$to,
3
st4

$t3,
$to,
$t3,

$tl

$tl
St4

t4

tmpl a+b
tmpl = tmpl % 3

tmpl = tmpl ==
tmp2 = a <b
¢ = tmp2 & tmpl

18/18

	Effective documentation
	Arithmetic and logical expressions
	Compositionality
	Sequentializing complex expressions
	Bitwise vs. logical operations

